Tính thể tích khối lăng trụ có chiều cao bằng h, đáy là ngũ giác đều nội tiếp trong một đường tròn bán kính r.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia đáy của lăng trụ đã cho thành năm tam giác cân có chung đỉnh O là tâm đường tròn ngoại tiếp đáy. Khi đó diện tích đáy bằng \(\dfrac{5}{2}r^2\sin72^0\). Do đó thể tích lăng trụ đó bằng \(\dfrac{5}{2}hr^2\sin72^0\)
Đáp án B
Gọi ABCD.A'B'C'D' là hình lăng trụ nội tiếp hình trụ. Khi đó lăng trụ đã cho là lăng trụ đứng và có chiều cao là chiều cao h của hình trụ. Vậy thể tích khối lăng trụ đạt giá trị lớn nhất khi và chỉ khi diện tích đáy ABCD đạt giá trị lớn nhất. Do ABCD nội tiếp đường tròn đáy của hình trụ nên ta có:
Dấu bằng xảy ra khi ABCD là hình vuông. Vậy thể tích khối lăng trụ tứ giác nội tiếp hình trụ lớn nhất là V = 2 r 2 h
Đáp án B
Xét khối lăng trụ tam giác đều ABC.A’B’C’ ⇒ A A ' = h
Đặt A B = x suy ra bán kính đường tròn ngoại tiếp Δ A B C là R = x 3 3
Khi đó a = x 3 3 ⇒ x = a 3
Thể tích cần tìm là:
V = h S = h a 3 2 3 4 = 3 3 a 2 h 4
Chia đáy của hình lăng trụ đã cho thành năm tam giác cân có chung đỉnh O là tâm đường tròn ngoại tiếp đáy.
Khi đó diện tích đáy bằng:
Do đó thể tích lăng trụ đó bằng: