cho a/c=(a-b)/(b-c) chung minh 1/a+1/(a-b)=1/(b-c)-1/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
https://www.facebook.com/OnThiDaiHocKhoiA/posts/508217699295984
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=1\)
\(\Leftrightarrow a^2+b^2+c^2=1\)
áp dụng BĐT CAUCHY-SCHWARZ dưới dạng engel ta đc
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)
<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{1}\)(vì a+b+c =1)
<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)