1.ΔA'B'C' ΔA''B''C'' theo tỉ số đồng dạng k1, ΔA''B''C'' ΔABC theo tỉ số đồng dạng k2. Hỏi tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔA'B'C' ΔA''B''C'' theo tỉ số đồng dạng k1 ⇒
ΔA''B''C'' ΔABC theo tỉ số đồng dạng k2 ⇒
Mà ΔA'B'C' ΔA''B''C''; ΔA''B''C'' ΔABC
⇒ ΔA'B'C' ΔABC (theo tính chất 3)
Tỉ số đồng dạng:
Vậy tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k1.k2.
Sửa đề: ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)
Vì ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)
mà ΔA'B'C' \(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_2=\dfrac{3}{4}\)
nên ΔABC\(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_1\cdot k_2=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
hay ΔA"B"C"\(\sim\)ΔABC theo tỉ số đồng dạng k=2
2: Tam giác 1 đồng dạng với tam giác 3 theo tỉ số là k=k1*k2
=>Tam giác 3 đồng dạng với tam giác 1 theo tỉ số là k'=1/k1*k2
1: Sửa đề: x^2-3x+2=0
=>(x-1)(x-2)=0
=>x=1 hoặc x=2
1^4+2^4=1+16=17
a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Vì hai tam giác bằng nhau có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.
Khi đó, \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 1\end{array} \right.\). Vậy \(\Delta A'B'C'\backsim\Delta ABC\) và tỉ số đồng dạng là 1.
b) Vì \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng là \(k\) nên tỉ số đồng dạng là: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\).
Khi đó, \(\Delta ABC\backsim\Delta A'B'C'\) đồng dạng với tỉ số đồng dạng là: \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{k}\).
Vậy \(\Delta ABC\backsim\Delta A'B'C'\)theo tỉ số \(\frac{1}{k}\).
Ta có : \(\hept{\begin{cases}\Delta A'B'C'\approx\Delta A''B''C''\\\Delta A''B''C''\approx\Delta ABC\end{cases}}\)
=> \(\hept{\begin{cases}\frac{A'B'}{A''B''}=k_1\\\frac{AB}{A''B''}=\frac{1}{k_2}\end{cases}}\)
=> \(\frac{A'B'}{AB}=k_1.k_2\)
=> Tỉ số đồng dạng khi \(\Delta A'B'C\approx\Delta ABC\) là k1.k2