K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

a ,   Δ A B C ,   A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H ,   H ⏜ = 90 0   g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b ,   Δ A B C ,   A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2

26 tháng 5 2018

a) AH= 6 cm; góc ABC= 56

a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=35^2-21^2=784\)

hay AC=28cm

Xét ΔBAC vuông tại A có 

\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{ABC}\simeq53^0\)

\(\Leftrightarrow\widehat{ACB}=37^0\)

26 tháng 9 2021

AM = 3,125 , AD =15\(\sqrt{2}\): 7

 

27 tháng 9 2021

a) Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:
AH^2=BH.HC\Leftrightarrow HC=\dfrac{AH^2}{HB}=2,25cm.
BC=BH+HC=4+2,25=6,25cm.
AM=\dfrac{BC}{2}=3,125cm.
b) Áp dụng định lý Pi-ta-go ta có:
AB=\sqrt{AH^2+BH^2}=5cm.
 AC=\sqrt{BC^2-AB^2}=\sqrt{6,25^2-5^2}=3,75cm.
Theo tính chất tia phân giác của một góc:\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{5}{3,75}=\dfrac{4}{3}.

Gọi E, F là chân đường vuông góc hạ từ D xuống AC và AB. Ta thấy ngay FDEA là hình vuông nội tiếp tam giác vuông ABC.

Từ đó ta có \dfrac{DE}{AB}=\dfrac{DC}{BC}=\dfrac{3}{7}\Rightarrow DE=\dfrac{3}{7}.5=\dfrac{15}{7}\left(cm\right)

\Rightarrow AD=\dfrac{15\sqrt{2}}{7}\left(cm\right).

9 tháng 5 2022

a,

Xét Δ AHB và Δ CAB, có :

\(\widehat{AHB}=\widehat{CAB}=90^o\)

\(\widehat{ABH}=\widehat{CBA}\) (góc chung)

=> Δ AHB ∾ Δ CAB (g.g)

=> \(\dfrac{AH}{CA}=\dfrac{HB}{AB}\)

=> \(\dfrac{AB}{CA}=\dfrac{HB}{AH}\)

Xét Δ AHB và Δ CHA, có :

\(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\dfrac{AB}{CA}=\dfrac{HB}{AH}\) (cmt)

=> Δ AHB ∾ Δ CHA (g.g)

=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)

=> \(AH^2=HB.CH\)

 

9 tháng 5 2022

b, Ta có : \(AH^2=BH.CH\) (cmt)

=> \(AH^2=4.9\)

=> \(AH^2=36\)

=> AH = 6

Xét Δ AHB, có :

\(AB^2=AH^2+BH^2\)

=> \(AB^2=6^2+4^2\)

=> \(AB^2=52\)

=> AB = 7,2 (cm)

Xét Δ AHC, có :

\(AC^2=AH^2+CH^2\)

=> \(AC^2=6^2+9^2\)

=> \(AC^2=117\)

=> AC = 10,8 (cm)

Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\)

=> \(BC^2=7,2^2+10,8^2\)

=> \(BC^2=168,48\)

=> BC = 12,9 (cm)

Ta có : MC = \(\dfrac{1}{2}BC\) (M là trung điểm BC do có đường trung tuyến AM)

=> MC = 6,45 (cm)

Ta có : BC = BH + HM + MC

=> 12,9 = 4 + HM + 6,45

=> HM = 12,9 - 4 - 6,45

=> HM = 2,45 (cm)

Xét Δ AMH vuông tại H, có :

\(S_{\Delta AMH}=\dfrac{1}{2}AH.HM\)

=> \(S_{\Delta AMH}=\dfrac{1}{2}.6.2,45\)

=> \(S_{\Delta AMH}=7,35\left(cm\right)\)

Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.a)     Tìm độ dài của BH; CH; AB và AC.b) Vẽ trung tuyến AM. Tính AMc)     Tìm diện tích của rAHM.Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.Bài 4: BP 2017-2018Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH =...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.

a)     Tìm độ dài của BH; CH; AB và AC.

b) Vẽ trung tuyến AM. Tính AM

c)     Tìm diện tích của rAHM.

Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.

Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.

Bài 4: BP 2017-2018

Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm.

a)       Tính độ dài đường cao AH và ABC của tam giác ABC.

b)       Vẽ đường trung tuyến AM, (M e BC) của tam giác ABC. Tính AM và diện tích của tam giác

Bài 5.   Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4 . Hãy tính các cạnh góc vuông của tam giác vuông này, đường trung tuyến ứng với cạnh huyền và diện tích tam giác ABC

Bài 6. (1.0 điểm)

      Cho tam giác ABC vuông tại A, có AB = 15cm và AC = 20cm. Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.

 

 

1
24 tháng 7 2021

câu c bài 1 là tích diện tích của tam giác AHM nhá'

3 tháng 4 2017

Đường trung tuyến AM đường cao AH mới đúng chứ bạn
 

3 tháng 4 2017

Bạn viết cái gì vậy ko hiểu

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

DO đó:ΔABC\(\sim\)ΔHBA

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

c: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó:ADHE là hình chữ nhật

Suy ra: AH=DE

mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)

nên DE=8cm

27 tháng 10 2021

a: AB=15(cm)

AC=20(cm)

BH=9(cm)
CH=16(cm)