Tìm nghiệm nguyên dương của PT: 2x-7y=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình x^2 - 2m^2x - 4m - 1 = 0 có nghiệm nguyên, ta cần tìm giá trị của m sao cho delta (đại diện cho biểu thức bên trong căn bậc hai trong công thức nghiệm) là một số chính phương.
Công thức tính delta là: delta = b^2 - 4ac
Áp dụng vào phương trình đã cho, ta có:
a = 1, b = -2m^2, c = -4m - 1
delta = (-2m^2)^2 - 4(1)(-4m - 1)
= 4m^4 + 16m + 4
Để delta là một số chính phương, ta cần tìm các giá trị nguyên dương của m để đạt được điều kiện này. Ta có thể thử từng giá trị nguyên dương của m và kiểm tra xem delta có là số chính phương hay không.
Ví dụ, với m = 1, ta có:
delta = 4(1)^4 + 16(1) + 4
= 4 + 16 + 4
= 24
24 không phải là số chính phương.
Tiếp tục thử một số giá trị nguyên dương khác cho m, ta có:
Với m = 2, delta = 108 (không phải số chính phương)Với m = 3, delta = 400 (không phải số chính phương)Với m = 4, delta = 1004 (không phải số chính phương)Với m = 5, delta = 2016 (không phải số chính phương)Với m = 6, delta = 3484 (không phải số chính phương)Qua việc thử nghiệm, ta không tìm được giá trị nguyên dương của m để delta là một số chính phương. Do đó, không có giá trị của m thỏa mãn yêu cầu đề bài.
15:373x2 + y2 + 2x - 2y = 1
\(\Leftrightarrow\)3x2 + y2 + 2x - 2y - 1 = 0
\(\Leftrightarrow\)2x( x+ 1 ) + ( x + 1 ) ( x - 1 ) - y( y - 1 ) = 0
\(\Leftrightarrow\)( x + 1 ) ( 3x + 1 ) - y( y - 1 ) = 0
\(\orbr{\begin{cases}\left(x+1\right)\left(3x+1\right)=0\\y\left(y-1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}\\\hept{\begin{cases}y=0\\y=1\end{cases}}\end{cases}}\)
x=\(\frac{5+7y}{2}=\frac{4+6y+y+1}{2}=\frac{2\left(2+3y\right)+y+1}{2}=2+3y+\frac{y+1}{2}\) Để phương trình có nghiệm nguyên thì \(\frac{y+1}{2}\)nguyên .Đặt \(\frac{y+1}{2}=t\)\(\left(t\in Z\right)\Rightarrow y=2t-1\)và \(x=7t\)
a) x = 1
b) x = 1