K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

5 tháng 12 2021

D

NV
5 tháng 12 2021

Pt đã cho có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)

\(\Leftrightarrow-1< m< 2\)

8 tháng 11 2017

Chọn B.

Phương trình (m + 2) x 2  - 3x + 2m - 3 = 0 có hai nghiệm trái dấu

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Vậy phương trình (m + 2) x 2  - 3x + 2m - 3 = 0 có hai nghiệm trái dấu khi Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).

a, Thay m = 5 vào biểu thức ta đc 

 \(x^2-2\left(5+6\right)x+5-4=0\)

\(x^2-33x+1=0\)

\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)

Nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)

b, Ta có :

\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)

\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)

Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x 

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

11 tháng 12 2019

Phương trình có hai nghiệm trái dấu khi và chỉ khi Giải sách bài tập Toán 10 | Giải sbt Toán 10 suy ra m < -2.

    Tổng của hai nghiệm bằng -3 khi Giải sách bài tập Toán 10 | Giải sbt Toán 10 thỏa mãn điều kiện m < -2.

    Đáp số: m = -5.

1 tháng 3 2017

\(x^2-2\left(m+1\right)x+m-4=0\)

( a = 1 , b = -2(m+1) , c = m - 4 )

\(\Delta=b^2-4ac\)

   \(=\left[-2\left(m+1\right)\right]^2-4.1.\left(m-4\right)\)

   \(=4\left(m^2+2m+1\right)-4m+16\)

   \(=4m^2+8m+4-4m+16\)     

   \(=4m^2+4m+20\)

  \(=4m^2+4m+1^2-1^2+20\)

   \(=\left(2m+1\right)^2+19>0\)với mọi m

Vậy pt có 2 nghiệm pb với mọi m

Ta có: \(P=x_2.x_1=\frac{c}{a}=\frac{m-4}{1}=m-4\)

Để có 2 no cùng dấu thì \(\hept{\begin{cases}\Delta\ge0\\P>0\end{cases}}\)

\(P>0\Leftrightarrow m-4>0\Leftrightarrow m>4\)

  

a:Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=(2m-1)^2+15>=15>0

=>Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì -m-3<0

=>m+3>0

=>m>-3

c: Để phương trình có hai nghiệm âm thì:

2m-2<0 và -m-3>0

=>m<1 và m<-3

=>m<-3

d: x1^2+x2^2=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>0 với mọi m