Nếu biết 3.sin4x + 2cos4x = 98/81 thì giá trị biểu thức A = 2sin4x + 3cos4x bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Ta có:
+ sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x.cos2x = 1 - 2sin2x.cos2x.
+ sin4x + cos4x = 1 - 3sin2x.cos2x.
Do đó
A = 3(1 - 2sin2x.cos2x) - 2(1 - 3sin2x.cos2x) = 1.
\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)
\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)
\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)
\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)
\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)
\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)
Chọn C.
Ta có A = sin4x + cos4x - ¼cos 4x = ( sin2x + cos2x) 2 - 2sin2x.cos2x - ¼cos 4x
= 1 - ½sin22x - ¼cos4x = 1 - ¼(1 – cos4x) - ¼cos4x = 3/4
Chọn C.
Ta có: C = 2( sin4x + cos4x + sin2x.cos2x) 2 - ( sin8x + cos8x)
= 2 [ (sin2x + cos2x) 2 - sin2x.cos2x]2 - [ (sin4x + cos4x)2 - 2sin4x.cos4x]
= 2[ 1 - sin2x.cos2x]2 - [ (sin2x+ cos2x) 2 - 2sin2x.cos2x]2 + 2sin4x.cos4x
= 2[ 1- sin2x.cos2x]2 - [ 1 - 2sin2x.cos2x]2 + 2sin4x.cos4x
= 2( 1 - 2sin2xcos2x+ sin4x.cos4x) –( 1- 4sin2xcos2x+ 4sin4xcos4x) + 2sin4x.cos4x
= 1.
Chọn D.
Ta có
Đặt