Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=3a, BC=4a và AB ⊥ (SBC) . Biết SB = 2 a 3 và S B C ^ = 30 ° . Thể tích khối chóp S.ABC bằng:
A. a 3 3 2
B. 2 a 3 3
C. 3 a 3 3 2
D. a 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ \(SH\perp BC\Rightarrow\left(SBC\right)\perp\left(ABC\right)\)
\(\Rightarrow SH\perp BC;SH=SB.\sin\widehat{SBC}=a\sqrt{3}\)
Diện tích : \(S_{ABC}=\frac{12}{\boxtimes}BA.BC=6a^2\)
Thể tích : \(V_{s.ABC}=\frac{1}{3}S_{ABC}.SH=2a^3\sqrt{3}\)
Hạ \(HD\perp AC\left(D\in AC\right),HK\perp SD\left(K\in SD\right)\)
\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H,\left(SAC\right)\right)\)
\(BH=SB.\cos\widehat{SBC}=3a\Rightarrow BC=4HC\)
\(\Rightarrow d\left(B,\left(SAC\right)\right)=4d\left(H,SAC\right)\)
Ta có : \(AC=\sqrt{BA^2+BC^2}=5a;HC=BC-BH=a\)
\(\Rightarrow HD=BA.\frac{HC}{AC}=\frac{3a}{5}\)
\(HK=\frac{SH.HS}{\sqrt{SH^2+HD^2}}=\frac{3a\sqrt{7}}{14}\)
Vậy \(d\left(B,\left(SAC\right)\right)=4HK=\frac{6a\sqrt{7}}{7}\)
Chọn D.
Từ giả thiết ta suy ra hình chiếu vuông góc H của S trên (ABC) trùng với tâm đường tròn ngoại tiếp Δ A B C .Mà Δ A B C vuông tại B nên H là trung điểm của AC. Kẻ HK//AB. Ta suy ra, K là trung điểm của BC và ta có góc giữa mặt bên (SBC) tạo với đáy là góc S K H ^ = 60 0 . Ta có H K = a 2 ⇒ S H = a 3 2 và S Δ A B C = a 2 3 2
Vậy V S . A B C = 1 3 S H . S Δ A B C = 1 3 a 3 2 . a 2 3 2 = a 3 4
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra S H ⊥ A B C
Ta có
S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12
Đáp án B