K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

sao mình không thấy câu trả lời vậy

 

\(\Leftrightarrow\frac{x^2+y^2}{3xy}=\frac{13}{18}\)

<=>18(x2+y2)=39xy

<=>6x2-13xy+6y2=0

<=>(2x-3y)(3x-2y)=0

<=>2x=3y hoặc 3x=2y

với 2x=3y

\(\Rightarrow\frac{1}{x}+\frac{1}{\frac{2x}{3}}=\frac{5}{18}\Rightarrow\frac{1}{x}+\frac{3}{2x}=\frac{5}{18}\)

\(\Rightarrow\frac{5}{2x}=\frac{5}{18}\Rightarrow x=9;y=6\)

với 3x=2y

\(\Rightarrow\frac{1}{\frac{2y}{3}}+\frac{1}{y}=\frac{5}{18}\Rightarrow\frac{3}{2y}+\frac{1}{y}=\frac{5}{18}\)

\(\Rightarrow\frac{5}{2y}=\frac{5}{18}\Rightarrow y=9;x=6\)

Vậy nghiệm của phương trình (x;y)=(6;9);(9;6)

4 tháng 7 2020

Bạn có thể tham khảo ở đây: https://olm.vn/hoi-dap/detail/99503384500.html
Thông tin đến bạn!

\(\left\{{}\begin{matrix}0,3x+0,5y=3\\1,5x-2y=1,5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1,5x+2,5y=15\\1,5x-2y=1,5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4,5y=13,5\\1,5x-2y=1,5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\1,5x=2y+1,5=2\cdot3+1,5=7,5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=5\\y=3\end{matrix}\right.\)

2 tháng 12 2023

\(\left\{{}\begin{matrix}0,3x+0,5y=3\\1,5x-2y=1,5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1,5x+2,5y=15\\1,5x-2y=1,5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4,5y=-13,5\\1,5x-2y=1,5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13,5}{4,5}=3\\1,5x-2.3=1,5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1,5+6}{1,5}=5\end{matrix}\right.\\ Vậy:\left(x;y\right)=\left(5;3\right)\)

4 tháng 9 2016

Đặt \(P=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)
\(P=x^4\left(y-z\right)+y^4\left(z-x\right)+z^4\left(x-y\right)\)

\(=x^4\left(y-z\right)+y^4z-y^4x+z^4x-z^4y\)

\(=x^4\left(y-z\right)+y^4z-z^4y-y^4x+z^4x\)

\(=x^4\left(y-z\right)+yz\left(y^3-z^3\right)-x\left(y^4-z^4\right)\)

\(=x^4\left(y-z\right)+yz\left(y-z\right)\left(y^2+yz+z^2\right)-x\left(y-z\right)\left(y^3+y^2z+yz^2+z^3\right)\)

\(=\left(y-z\right)\left[x^4+yz\left(y^2+yz+z^2\right)-x\left(y^3+y^2z+yz^2+z^3\right)\right]\)

\(=\left(y-z\right)\left(x^4+y^3z+y^2z^2+yz^3-xy^3-xy^2z-xyz^2-xz^3\right)\)

\(=\left(y-z\right)\left(x^4-xz^3-xy^3+y^3z-xy^2z+y^2z^2-xyz^2+yz^3\right)\)

\(=\left(y-z\right)\left[x\left(x^3-z^3\right)-y^3\left(x-z\right)-y^2z\left(x-z\right)-yz^2\left(x-z\right)\right]\)

\(=\left(y-z\right)\left[x\left(x-z\right)\left(x^2+xz+z^2\right)-y^3\left(x-z\right)-y^2z\left(x-z\right)-yz^2\left(x-z\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left[x\left(x^2+xz+z^2\right)-y^3-y^2z-yz^2\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x^3+x^2z+xz^2-y^3-y^2z-yz^2\right)\)

\(=\left(y-z\right)\left(x-z\right)\left(x^3-y^3+x^2z-y^2z+xz^2-yz^2\right)\)

\(=\left(y-z\right)\left(x-z\right)\left[\left(x-y\right)\left(x^2+xy+y^2\right)+z\left(x^2-y^2\right)+z^2\left(x-y\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left[\left(x-y\right)\left(x^2+xy+y^2\right)+z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left[x^2+xy+y^2+z\left(x+y\right)+z^2\right]\)

\(=\left(y-z\right)\left(x-z\right)\left(x-y\right)\left(x^2+xy+y^2+xz+yz+z^2\right)\)

Đặt \(A=x^2+xy+y^2+xz+yz+z^2\)

\(A=\frac{2\left(x^2+xy+y^2+xz+yz+z^2\right)}{2}=\frac{2x^2+2xy+2y^2+2xz+2yz+2z^2}{2}\)

\(=\frac{\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)}{2}\)

\(=\frac{\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2}{2}\)

=>\(P=\left(y-z\right)\left(x-z\right)\left(x-y\right).\frac{\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2}{2}\)

Ta có: \(x>y>z< =>\hept{\begin{cases}x>y\\y>z\\x>z\end{cases}}< =>\hept{\begin{cases}x-y>0\\y-z>0\\x-z>0\end{cases}}\)

Dễ thấy \(\left(x+y\right)^2\ge0;\left(y+z\right)^2\ge0;\left(x+z\right)^2\ge0\) với mọi x;y;z

\(=>P>0\) (đpcm)

23 tháng 1 2017

1. Đ

2 S    ( lớn hơn hoặc =.)

3S    ( thêm hoặc =. vd x = 0)

5S ( với mọi x >0)

14 tháng 5 2020
https://i.imgur.com/QSvCLv5.jpg
7 tháng 2 2018

hệ pt <=> 2x+3y = 4

                2x-2y = 2m

<=> 5y = 4-2m

       x-y = m

<=> y = 4-2m/5

       x = 3m+4/5

a, Với m = 1 thì : x = 7/5 ; y = 2/5

b, Để hệ có nghiệm x>0 ; y> 0 thì :

4-2m/5 > 0 và 3m+4/5 > 0

<=> 4-2m > 0 và 3m+4 > 0

<=> m < 2 và m > -4/3

<=> -4/3 < m < 2

Tk mk nha