Gía trị nhỏ nhất của biểu thức lx-1l +lx-3l là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Dấu "=" xảy ra khi a và b cùng dấu, hay \(a.b\ge0\)
\(B=\left|x-2010\right|+\left|2-x\right|\ge\left|x-2010+2-x\right|=2008\)
Dấu "=" xảy ra khi \(\left(x-2010\right)\left(2-x\right)\ge0\)\(\Leftrightarrow\left(x-2\right)\left(x-2010\right)\le0\)(1)
Do \(x-2>x-2010\) nên (1) tương đương \(x-2\ge0\) và \(x-2010\le0\), tương đương \(2\le x\le2010\)
Vậy GTNN của B là 2008
Vì | x - 2001| > hoặc = 2001 - x
| x - 1| > hoặc = x - 1
Nên A = |x - 2001| + | x - 1| > hoặc = 2001 - x + x - 1 = 2000
=> A > hoặc = 2002
=> Để A có giá trị nhỏ nhất <=> A = 2002
Khi đó 2001 - x > hoặc = 0 nên x < hoặc = 2001 (1)
x - 1 > hoặc = 0 nên x > hoặc = 1 (2)
Từ (1) và (2) => 1 < hoặc = x < hoặc = 2001
Vậy A có GTNN là 2000 <=> 1 < hoặc = x < hoặc = 2001
ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)
mà \(\left|x-2\right|\ge0\)
\(\Rightarrow P\ge8\)
dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)
<=> x=2
vậy Pmin =8 <=> x=2
Lời giải:
$x-y=2\Rightarrow x=y+2$
$C=|x+1|+|2y+1|=|y+2+1|+|2y+1|=|y+3|+|2y+1|$
Nếu $y\geq \frac{-1}{2}$ thì:
$C=y+3+2y+1=4y+4\geq 4.\frac{-1}{2}+4=2$
Nếu $\frac{-1}{2}> y\geq -3$ thì:
$C=y+3+[-(2y+1)]=2-y> 2-\frac{-1}{2}=2,5$
Nếu $y< -3$ thì:
$C=-y-3-2y-1=-4y-4=-4(y+1)> -4(-3+1)=8$
Từ các TH trên suy ra $C_{\min}=2$ khi $y\geq \frac{-1}{2}$