K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2021

2450 nhé

23 tháng 5 2021

còn cái nịtッ

9 tháng 11 2016

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

10 tháng 4 2017

Lập bảng xét dấu rồi làm nha bạn.

10 tháng 4 2017

mk mới lớp 7 k giải đc toán 8 

5 tháng 7 2015

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Dấu "=" xảy ra khi a và b cùng dấu, hay \(a.b\ge0\)

\(B=\left|x-2010\right|+\left|2-x\right|\ge\left|x-2010+2-x\right|=2008\)

Dấu "=" xảy ra khi \(\left(x-2010\right)\left(2-x\right)\ge0\)\(\Leftrightarrow\left(x-2\right)\left(x-2010\right)\le0\)(1)

Do \(x-2>x-2010\) nên (1) tương đương \(x-2\ge0\) và \(x-2010\le0\), tương đương \(2\le x\le2010\)

Vậy GTNN của B là 2008

 

16 tháng 10 2017

Bằng 0 và ko có giá trị của x thỏa mãn

16 tháng 10 2017

làm ơn ghi lời giải

4 tháng 7 2015

Vì | x - 2001| > hoặc = 2001 - x

    | x - 1| > hoặc = x - 1

Nên A = |x - 2001| + | x - 1| > hoặc =  2001 - x + x - 1 = 2000

=> A > hoặc = 2002

=> Để A có giá trị nhỏ nhất <=> A = 2002

Khi đó 2001 - x > hoặc = 0 nên x < hoặc = 2001    (1)

          x - 1 > hoặc = 0 nên x > hoặc = 1               (2)

Từ (1) và (2) => 1 < hoặc = x < hoặc = 2001

Vậy A có GTNN là 2000 <=>  1 < hoặc = x < hoặc = 2001

4 tháng 5 2016

ta có A=

10 tháng 9 2017

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2

AH
Akai Haruma
Giáo viên
31 tháng 7 2024

Lời giải:

$x-y=2\Rightarrow x=y+2$

$C=|x+1|+|2y+1|=|y+2+1|+|2y+1|=|y+3|+|2y+1|$

Nếu $y\geq \frac{-1}{2}$ thì:

$C=y+3+2y+1=4y+4\geq 4.\frac{-1}{2}+4=2$
Nếu $\frac{-1}{2}> y\geq -3$ thì:

$C=y+3+[-(2y+1)]=2-y> 2-\frac{-1}{2}=2,5$

Nếu $y< -3$ thì:

$C=-y-3-2y-1=-4y-4=-4(y+1)> -4(-3+1)=8$

Từ các TH trên suy ra $C_{\min}=2$ khi $y\geq \frac{-1}{2}$