Cho tam giác ABC có AB < AC. Trên tia đối của tia BC lấy điểm D sao cho BD = BA, trên tia đối của tia CB lấy điểm E sao cho CE = CA. So sánh độ dài của AD và AE
A. AD < AE
B. AD > AE
C. AD = AE
D. Không so sánh được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
+ Trong ΔABC có: góc ABC đối diện cạnh AC, góc ACB đối diện cạnh AB.
b) ΔAED có:
⇒ AE < AD hay AD > AE
(Bạn tự vẽ hình giùm)
a/ Ta có AC > AB (gt) => \(\widehat{AEB}< \widehat{ADC}\)(quan hệ giữa góc và cạnh đối diện)
b/ Ta có EC < EB => AE < AB (quan hệ giữa đường xiên và hình chiếu) (1)
và CB < CD => AB < AD (quan hệ giữa đường xiên và hình chiếu) (2)
Từ (1) và (2) => AE < AD
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: Xét ΔAHB vuông tại H và ΔACK vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK và AH=AK
Xét ΔADE co AH/AD=AK/AE
nên HK//DE
=>HK//BC
c: góc HBD+góc D=90 độ
góc KCE+góc E=90 độ
mà góc D=góc E
nên góc HBD=góc KCE
=>góc OBC=góc OCB
=>OB=OC
=>O nằm trên trung trực của BC(1)
ΔBCA cân tại A
mà AM là trung tuyến
nên AM là trung trực của BC(2)
Từ (1), (2) suy ra A,M,O thẳng hàng
a.
b. Xét ΔADE có góc ADE < góc AED (chứng minh ở phần a)
=> AE < AD (Quan hệ giữa góc - cạnh đối diện trong tam giác)
a) So sánh ˆADCADC^ và ˆAECAEC^
Ta có: AC < AB
=> ˆABC<ˆACBABC^<ACB^ (1)
Vì AC = EC => ∆AEC cân tại C
=> ˆAEC<ˆCAEAEC^<CAE^
Mà ˆACB=ˆAEC+ˆEACACB^=AEC^+EAC^ (góc ngoài tại C của ∆AEC)
=> ˆACB=2.ˆAECACB^=2.AEC^ (2)
Chứng minh tương tự : ˆABC=2ˆADCABC^=2ADC^ (3)
Từ (1), (2), (3) => 2ˆAEC=2ˆADC2AEC^=2ADC^ hay ˆAEC=ˆADCAEC^=ADC^
b) ∆AED có:
ˆAED=ˆADEAED^=ADE^ (chứng minh trên) => AD = AE
Chọn A