K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)

25 tháng 12 2015

tick đi  rồi tớ làm hộ cho