K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

\(\left(a-b\right)^2=a^2-2ab+b^2\ge0 \)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow A\ge2\)

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

17 tháng 9 2021

\(M=a^2+ab+b^2-3a-3b+2001\)

\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)

\(=\left[\left(a+b\right)^2-2\left(a+b\right).2+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)

\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)

\(\Rightarrow M\ge1998\)

\(minM=1998\Leftrightarrow a=b=1\)

17 tháng 9 2021

thanks

23 tháng 2 2019

\(2M=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+2.1998\ge2.1998\Rightarrow M\ge1998\)

Dấu \("="\) xảy ra khi đồng thời : \(\hept{\begin{cases}a+b-2=0\\a-1=0\\b-1=0\end{cases}}\)         Vậy  min \(M=1998\Rightarrow a=b=1\)

13 tháng 6 2020

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

13 tháng 6 2020

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

30 tháng 5 2017

Đáp án đúng : C