K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

Đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

27 tháng 3 2020

\(\text{a) 5(2x-3)-4(5x-7)=19-2(x+11)}\)

\(10x-15-20x+28=19-2x-22\)

\(10x-20x+2x=19-22-28+15\)

\(-8x=-16\)

\(\Rightarrow x=2\)

\(\text{b) 4(x+3)-7x+17=8(5x-1)+166}\)

\(4x+12-7x+17=40x-8+166\)

\(4x-7x-40x=-8+166-17-12\)

\(-43x=129\)

\(x=-3\)

\(\text{c) 17-14(x+1)=13-4(x+1)-5(x-3)}\)

\(17-14x+14=13-4x-4-5x+15\)

\(-14x+4x+5x=13-4+15-14-17\)

\(-5x=-7\)

\(x=\frac{7}{5}\)

\(\text{d) 5x+3,5+(3x-4)=7x-3(x-0,5)}\)

\(5x+3,5+3x-4=7x-3x+1,5\)

\(5x+3x-7x+3x=1,5-3,5\)

\(x=-2\)

\(\text{e) 7(4x+3)-4(x-1)=15(x+0,75)+7}\)

\(28x+21-4x+4=15x+11,25+7\)

\(28x-4x-15x=11,25+7-4-21\)

\(9x=\frac{-27}{4}\)

\(x=\frac{-3}{4}\)

\(\text{f) 3x+2,42+o,8x=3,38-0,2x}\)

\(3x+0,8x+0,2x=3,38-2,42\)

\(4x=\frac{24}{25}\)

\(x=\frac{6}{25}\)

chúc bạn học tốt !!

a: =>\(\dfrac{5x-15+4x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{1}{x}\)

=>\(\dfrac{9x-23}{\left(x-2\right)\left(x-3\right)}=\dfrac{1}{x}\)

=>9x^2-23x=x^2-5x+6

=>8x^2-18x-6=0

=>\(x=\dfrac{9\pm\sqrt{129}}{8}\)

b: =>\(\dfrac{12x+1}{11x-4}=\dfrac{20x+17-20x+8}{18}=\dfrac{25}{18}\)

=>216x+18=275x-100

=>-59x=-118

=>x=2

7 tháng 6 2017

a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)

\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)

\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)

\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)

\(\Rightarrow x=1\)

6 tháng 7 2019

câu a

Học tại nhà - Toán - Bài 110035

6 tháng 7 2019

b,  ĐK \(x\ge-4\)

PT 

<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)

<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)

Giải (2)

=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)

<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)

<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)

<=> \(x^2-7x-4=6\sqrt{x+4}\)

<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)

Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)

=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)

=> \(a^2-b^2+6\left(a-b\right)=0\)

<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)

+ a=b

=> \(x-6=\sqrt{x+4}\)

=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)

+ a+b+6=0

=> \(x+\sqrt{x+4}=0\)(loại)

Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)

1 tháng 7 2017

Ta có : 17 - 14(x + 1) = 13 - 4(x + 1) - 5(x - 3)

<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15

<=> -14x + 3 = -9x + 24

<=> -14x + 9x = 24 - 3

<=> -5x = 21

=> x = -4,2

1 tháng 7 2017

Ta có :  5x + 3,5 + (3x - 4) = 7x - 3(x - 0,5)

<=>  5x + 3,5 + 3x - 4 = 7x - 3x + 1,5 

<=> 8x - 0,5 = 4x + 1,5

=> 8x - 4x = 1,5 + 0,5

=> 4x = 2

=> x = \(\frac{1}{2}\)

5 tháng 5 2019

a, (x+2)(x-3)=0

\(\left\{{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\left\{{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

=>S={-2;-3}

b, (x-5)(7-x)=0

\(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

=>S={5;7}

c, (2x+3)(-x+7)=0

\(\left\{{}\begin{matrix}2x+3=0\\-x+7=0\end{matrix}\right.\left\{{}\begin{matrix}2x=-3\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=7\end{matrix}\right.\)

=>S={-3/2;7}

5 tháng 5 2019

a) (x+2)(x+3)=0

<=> \(\left\{{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

b) (x-5)(7-x)

<=> \(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

c) ( 2x+3)(-2+7)

<=>\(\left\{{}\begin{matrix}2x+3=0\\7-2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{2}{7}\end{matrix}\right.\)

d) ( -10x+5)(2x+8)

<=>\(\left\{{}\begin{matrix}5-10x=0\\2x+8=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-4}{1}\end{matrix}\right.\)

e) (x-1)(x+5)(-3x+8)=0

<=> \(\left\{{}\begin{matrix}x-1=0\\x+5=0\\8-3x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)

f) (x-1)(3x+1)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=1\\x=\frac{-1}{3}\end{matrix}\right.\)

g) (x-1)(x+2)(x-3)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\end{matrix}\right.\)

h) (5x+3)(x2+4)(x-1)=0

<=> \(\left\{{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\)

x2+4 > 0 với mọi x∈ R

<=>\(\left\{{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)

Bạn tự kết luận nha , thông cảm cho tớ !leuleu

7 tháng 5 2018

a) x = 4

b) x = 3

c) x = 2

d) x = 1

e) x = 3

f) x = 2

g) x = 4

h) x = 3

9 tháng 12 2019

26 tháng 8 2023

a) (x.7 + 8) : 5 = 10

x.7 + 8 = 10.5

x.7 + 8 = 50

x.7 = 50 - 8

x.7 = 42

x = 42 : 7

x = 6

b) (x + 5).19 : 13 = 57

(x + 5).19 = 57 . 13

(x + 5).19 = 741

x + 5 = 741 : 19

x + 5 = 39

x = 39 - 5

x = 34

c) 4.(36 - 4.x) = 64

36 - 4x = 64 : 4

36 - 4x = 16

4x = 36 - 16

4x = 20

x = 20 : 4

x = 5

d) 7,6 : 19 . x = 3,2

0,4 . x = 3,2

x = 3,2 : 0,4

x = 8

e) (x : 2 + 50) : 5 = 12

x : 2 + 50 = 12 . 5

x : 2 + 50 = 60

x : 2 = 60 - 50

x : 2 = 10

x = 10 . 2

x = 20

g) 280 : (17 + 3.x) = 4

17 + 3x = 280 : 4

17 + 3x = 70

3x = 70 - 17

3x = 53

x = 53/3

h) 6.(28 - 8.x) = 72

28 - 8x = 72 : 6

28 - 8x = 12

8x = 28 - 12

8x = 16

x = 16 : 8

x = 2

i) (x - 15) : 3 : 12 = 6

(x - 15) : 3 = 6 . 12

(x - 15) : 3 = 72

x - 15 = 72 . 3

x - 15 = 216

x = 216 + 15

x = 231