Cho hàm số y = f x có đạo hàm liên tục trên ℝ . Đồ thị hàm số y = f ' x như hình bên dưới
Hàm số g x = f 1 - x + x 2 2 - x nghịch biến trên khoảng nào trong các khoảng sau?
A. (-3;1)
B. (-2;0)
C. - 1 ; 3 2
D. (1;3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Ta có: g(x) = f(x-2017) - 2018x + 2019.
Nhận xét: tịnh tiến đồ thị hàm số y = f'(x) sang bên phải theo phương của trục hoành 2017 đơn vị ta được đồ thị hàm số y = f'(x-2017) . Do đó, số nghiệm của phương trình f'(x) = 2018 bằng số nghiệm của phương trình (*).
Dựa vào đồ thị ta thấy phương trình (*) có nghiệm đơn duy nhất hay hàm số đã cho có duy nhất 1 điểm cực trị.
Chọn C.
Ta có f'(x)= 0
(Trong đó -2 < a < 0 < b < c < 2)
Ta có bảng xét dấuDựa vào bảng xét dấu ta thấy hàm số y = f(x) có 3 cực trị.
Hàm số nghịch biến nếu f’(x)<0 Quan sát đồ thị y=f’(x), chọn đáp án A. Chọn A
Đặt t = 1 - x, bất phương trình trở thành f'(t) > -t
Kẻ đường thẳng y = -x cắt đồ thị hàm số f'(x) lần lượt tại ba điểm x = -3, x = -1, x = 3 (như hình vẽ)
Quan sát đồ thị ta thấy bất phương trình
Đối chiếu đáp án ta chọn B.