Trong không gian với hệ tọa độ O x y z cho đường thẳng d : x - 1 2 = y - 7 1 = z - 3 4 và mặt phẳng P : 3 x - 2 y - z + 5 = 0 . Khoảng cách giữa d và P bằng
A. 14
B. 14 14 9
C. 6 14
D. 9 14 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Ta có d1 song song d2, phương trình mặt phẳng chứa hai đường thẳng d1, d2 là
Mà cùng phương với véc-tơ chỉ phương của hai đường thẳng d1, d2 nên không tồn tại đường thẳng nào đồng thời cắt cả bốn đường thẳng trên.
Chọn A.
Gọi ∆ là đường thẳng cần tìm
Đường thẳng d có vecto chỉ phương a d → = 0 ; 1 ; 1
Ta có A(2;3;3); B(2;2;2)
∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương
Vậy phương trình của ∆ là
Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)
Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:
\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)
\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)
\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)
Chọn A
Ta có M ∈ d suy ra M (2 + 2m; 3 + 3m; -4 -5m)
Tương tự N ∈ d’ suy ra N (-1 + 3n; 4 – 2n; 4 – n)
Từ đó ta có
Mà do MN là đường vuông góc chung của d và d’ nên:
Suy ra M (0;0;1), N (2;2;3).
Đường thẳng d đi qua điểm M(1;7;3) và có một VTCP u d → = 2 ; 1 ; 4
Mặt phẳng (P) có một VTPT n p → = 3 ; - 2 ; - 1