K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Đáp án A

Qua M dựng đường thắng song song AB cắt SB tại N.

Qua M dựng đường thắng song song AD cắt SD tại Q.

Qua N dựng đường thắng song song BC cắt SC tại P.

Ta có M N // A B ⇒ M N // A B C D N P // B C ⇒ N P // A B C D .

⇒ M N P Q / / A B C D .

Tương tự câu 1 ta có tỉ lệ diện tích S M N P Q S A B C D = M N A B 2 = S M S A 2 = 4 9 .

Ta có  S A B C D = 10.10 = 100   ⇔ S M N P Q = 100. 4 9 = 400 9

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Qua \(M\) dựng đường thẳng song song với \(AB\), cắt \(SB\) tại \(N\).

Qua \(N\) dựng đường thẳng song song với \(BC\), cắt \(SC\) tại \(P\).

Qua \(M\) dựng đường thẳng song song với \(AD\), cắt \(SD\) tại \(Q\).

Ta có:

\(\left. \begin{array}{l}MN\parallel AB\\AB \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MQ\parallel AD\\AD \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MQ\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MN\parallel \left( {ABCD} \right)\\MQ\parallel \left( {ABCD} \right)\\MN,MQ \subset \left( \alpha  \right)\end{array} \right\} \Rightarrow \left( {MNPQ} \right)\parallel \left( {ABCD} \right)\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{{MN}}{{AB}}} \right)^2}\)

Ta có: \({S_{ABC{\rm{D}}}} = A{B^2} = {10^2} = 100\)

\(MN\parallel AB \Rightarrow \frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3}\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{2}{3}} \right)^2} = \frac{4}{9} \Rightarrow {S_{MNPQ}} = \frac{4}{9}{S_{ABC{\rm{D}}}} = \frac{4}{9}.100 = \frac{{400}}{9}\)

Chọn A.

25 tháng 4 2019

12 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Vì M ∈ (SAB)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SAB) = MN

và MN // SA

Vì N ∈ (SBC)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SBC) = NP

và NP // BC (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (α) ∩ (SCD) = PQ

Q ∈ CD ⇒ Q ∈ (ABCD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (ABCD) = QM

và QM // BC (2)

Từ (1) và (2) suy ra tứ giác MNPQ là hình thang.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (SAB) ∩ (SCD) = Sx và Sx // AB // CD

MN ∩ PQ = I ⇒ Giải sách bài tập Toán 11 | Giải sbt Toán 11

MN ⊂ (SAB) ⇒ I ∈ (SAB), PQ ⊂ (SCD) ⇒ I ∈ (SCD)

⇒ I ∈ (SAB) ∩ (SCD) ⇒ I ∈ Sx

(SAB) và (SCD) cố định ⇒ Sx cố định ⇒ I thuộc Sx cố định.

15 tháng 2 2019

Đáp án là D

9 tháng 4 2017

Đáp án D

8 tháng 10 2019

Đáp án D

2 tháng 1 2019

Đáp án A

7 tháng 8 2019


12 tháng 4 2017

Đáp án A

Gọi N, P là hai điểm lần lượt thuộc S B , S C  thỏa mãn M N / / A B , M P / / A C .

Ta có M N // A B ⇒ M N // A B C M P // A C ⇒ M P // A B C ⇒ M N P / / A B C .

Gọi h 1  là đường cao của ΔMNP ứng với đáy MN.

Gọi h 2  là đường cao của ΔABC ứng với đáy AB.

Dễ thầy ΔMNP đồng dạng ΔABC ta có M N A B = h 1 h 2 = k .

Vậy để thỏa mãn yêu cầu bài toán

S Δ M N P S Δ A B C = 1 2 h 1 . M N 1 2 h 2 . A B = 1 2 ⇔ k . k = 1 2 ⇔ k = 2 2