1.3+3.5+5.7+...+97.99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo :
https://h.vn/hoi-dap/question/122304.html
Hok tốt !
A = 1.3 +3.5 + 5.7 + ...+ 97.99
6A= 1.3.6 + 3.5.6 + 5.7.6 + ... + 97.99.6
= 1.3.(5+1) + 3.5.(7-) + 5.7(9-3) + ... + 97.99(101-95)
= 1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
= 1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + .... + 97 .99.101 - 95.87.99
=3+97.99.101
=> A = ( 1+97.33.101) : 2
A= 161651
\(A=1.3+3.5+5.7+...+97.99\)
\(\Rightarrow6A=1.3.6+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+97+99.\left(101-95\right)\)
\(\Rightarrow6A=1.3.6+3.5.7-1.3.5+5.7.9-3.5.7+...+97.99.101-95.97.99\)
\(\Rightarrow6A=1.3.6+97.99.101-1.3.5\)
\(\Rightarrow6A=3.\left(1+97.33.101\right)\)
\(\Rightarrow2A=1+323301\)
\(\Rightarrow2A=323302\)
\(\Rightarrow A=161651\)
Khoảng cách giữa hai thừa số trong mỗi số hạng là 2, nhân 2 vế của A với 3 lần khoảng cách này ta được :
6A=1.3.6 + 3.5.6 + 5.7.6 + ... + 97.99.6
=1.3(5+1) + 3.5(7-1) + 5.7(9-3) + ... + 97.99(101-95)
=1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
=1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 97.99.101 - 97.97.99
=3+97.99.101
\(\frac{1+97.33.101}{1}=161651\)
Ta có :
B = 1.3 + 3.5 + 5.7 + 7.9 + ... + 97.99
6.B = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6
6.B = 1.3.[ 5 - (-1) ] + 3.5.( 7 - 1 ) + 5.7.( 9 - 3 ) + ...+ 97.99.( 101 - 95 )
6.B = 1.3.5 - ( -1).3.5 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
6.B = 97.99.101 - ( -1 ) .3.5
6.B = 97.99.101 + 1.3.5
6.B = 969918
=> B = 161653.
Khoảng cách giữa hai thừa số trong mỗi số hạng là 2, nhân 2 vế của A với 3 lần khoảng cách này ta được :
6A=1.3.6 + 3.5.6 + 5.7.6 + ... + 97.99.6
=1.3(5+1) + 3.5(7-1) + 5.7(9-3) + ... + 97.99(101-95)
=1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
=1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 97.99.101 - 97.97.99
=3+97.99.101
A=\(\frac{1+97.33.101}{2}\) = 161 651
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{3}{5.7}+...+\dfrac{4}{97.99}\)
\(=2\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=2\left(1-\dfrac{1}{99}\right)\)
\(=2\cdot\dfrac{98}{99}\)
\(=\dfrac{196}{99}\)
#NoSimp
=2(2/1*3+2/3*5+...+2/97*99)
=2(1-1/3+1/3-1/5+...+1/97-1/99)
=2*98/99=196/99
Ta có : S = 1.3 + 3.5 + 5.7 + .... + 97.99 + 99.101
=> 6S = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6 + 99.101.6
= 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7.(9 - 3) + .... + 97.99.(101 - 95) + 99.101.(103 - 97)
= 3 + 1.3.5 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99 + 99.101.103 - 97.99.101
= 3 + 99.101.103
= 1029900
=> 6S = 1029900
=> S = 171650
Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101
A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)
A = (1^2 + 3^2 + 5^2 + … + 97^2 + 99^2) + 2.(1 + 3 + 5 + … + 97 + 99).
Đặt B = 1^2 + 3^2 + 5^2 + … + 99^2
=> B = (1^2 + 2^2 + 3^2 + 4^2 + … + 100^2) – 2^2.(1^2 + 2^2 + 3^2 + 4^2 + … + 50^2)
Tính dãy tổng quát C = 1^2 + 2^2 + 3^2 + … + n^2
C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]
C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)
C = = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6
Áp dụng vào B ta được:
B = 100.101.201 : 6 – 4.50.51.101 : 6 = 166650
=> A = 166650 + 2.(1 + 99).50 : 2
=> A = 166650 + 5000 = 172650.
Đ/s: A = 172650.
S=1.3+3.5+5.7+....+97.99
S=(1+3+5+7+......+97).(3+5+7+........+99)
S=1+99+(3+5+7+......+97).2
S= 1+99+2400 .2
S=1+99+ 4800
S=100+4800
S=4900
Nhớ tick cho mình nha