cho A=71+72+73+.....+7k
tìm k để 6A+7k là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n-m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=>n=11;m=13
TH2:2n-m=3 và 2n+m=105 <=>n=27; m=51
TH3:2n-m=5 và 2n+m=67 <=>n=17 và m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13 và m=19
TH5:2n-m=15 và 2n+m=21 <=>n=9 và m=3
Ta có a+71=n2
=> a lớn nhất khi n lớn nhất
=>n=27
=>a=272-71=658
Vậy max a=658
Đặt a+16=c2
a-73=d2
=>(a+16)-(a-73)=c2-d2
=>(c+d)(c-d)= 89
Do 89 là số nguyên tố
=>c+d=89,c-d=1=>c=45,d=44
hoặc c+d=1, c-d=89=>c=45,d=-44
\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)
\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)
bn có thể tham khảo vào chtt đó chứ giải ra dài quá làm biếng hihi!!!
2436547
MÌNH THẤY CHỊ HOA LƯU LY LÀM THẾ NÀY:
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n -m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=> n=11; m=13
TH2: 2n-m=3 và 2n+m=105 <=> n=27; m=51
TH3: 2n-m=5 và 2n+m=67 <=> n=17; m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13; m=19
TH5: 2n-m=15 và 2n+m=21 <=>n=9; m=3
Ta có: a+71=n2
=> a lớn nhất khi n lớn nhất
=> n=27
=> a=272-71=658
Vậy max a=658
VÀ ANH HUỲNH THIỆN TÀI THÌ Ý KIẾN LÀ: còn trường hợp 1*315 thì sao? ra a max = 6170
Bạn mún hỉu sao thì tùy, mình mới lớp 7, hổng hỉu gì hết ^^!