Cho m,n E Z+ . Biết rằng: A>B và
A = ( 2+4+6+......+ 2m ): m ; B = (2+4+6+........+ 2n ): n
Hãy so sánh m và n ( các bạn nhớ ghi cách giải giúp tớ nhé!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{\left(2m-2\right)}{2}+1\right]}{2}}{m}\)=\(\frac{\left(m+1\right).m}{m}=m+1\)
B=\(\frac{\frac{\left(2n+2\right)\left[\frac{\left(2n-2\right)}{2}+2\right]}{2}}{m}=\frac{\left(n+1\right).n}{n}=n+1\)
Mà A>B =>m+1>n+1
Mà m, n thuộc Z+
=>m>n
5/x + y/3 = 1/6
<=> (30 - 6xy)/6x = x/6x
<=> x+6xy=30
<=> x = 30/(1+6y)
Vì x là số tự nhiên nên 1+6y phải là ước tự nhiên của 30 , vì y cũng là số tự nhiên nên chỉ có một giá trị của y thỏa là y=0
Vậy y=0, x=30
/x + y/3 = 1/6
<=> (30 - 6xy)/6x = x/6x
<=> x+6xy=30
<=> x = 30/(1+6y)
Vì x là số tự nhiên nên 1+6y phải là ước tự nhiên của 30 , vì y cũng là số tự nhiên nên chỉ có một giá trị của y thỏa là y=0
Vậy y=0, x=30
b) Đkxđ: x≠0
1/x + y/6 = 1/2
<=> (6+xy)/6x = 3x/6x
<=> 3x - xy = 6
<=> x = 6/(3-y)
Vì x là số tự nhiên nên 3-y là ước tự nhiên của 6, y cũng là số tự nhiên nên 3-y có thể là 1,2,3.
Vậy ta có các cặp số thỏa mãn là (2;0), (6;2), (3;1)
\(A=\left(\frac{2+2m.m}{2m}\right)=\left(\frac{2\left(1+m\right).m}{2m}\right)=1+m\)
\(B=\left(\frac{2+2n.n}{2n}\right)=\left(\frac{2\left(1.n\right).n}{2n}\right)=1.n\)
Do đó A < b => 1 + m < 1 + n => m < n
\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)
\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)
do A < b => 1 + m < 1 +n => m < n
\(A=\frac{2+4+6+...+2m}{m}=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=m+1\)
\(B=\frac{2+4+6+....+2n}{n}=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=n+1\)
Mà A>B=>m+1>n+1=>m>n
Vậy m>n
Bài 1:
Gọi phân số cần tìm là \(\dfrac{x}{18}\)
Theo đề bài đã cho, ta có:
\(\dfrac{-5}{6}< \dfrac{x}{18}< \dfrac{-1}{2}\)
\(\Rightarrow\dfrac{-15}{18}< \dfrac{x}{18}< \dfrac{-9}{18}\)
\(\Rightarrow-15< x< -9\)
\(\Rightarrow x=\left\{-14;-13;-12;-11;-10\right\}\)
Vậy các phân số cần tìm là:
\(\dfrac{-14}{18};\dfrac{-13}{18};\dfrac{-12}{18};\dfrac{-11}{18};\dfrac{-10}{18}\)
Bài 2:
a) Để x là một số hữu tỉ
\(x=\dfrac{5}{a-1}\) \(\in Q\)
\(\Rightarrow a-1\) khác 0
\(\Rightarrow a\) khác 1.
b) Để x là một số dương.
\(x=\dfrac{5}{a-1}\) \(>0\)
\(\Rightarrow a-1>0\)
\(\Rightarrow a>1\)
c) Để x là một số hữu tỉ âm
\(x=\dfrac{5}{a-1}\) <0\(\Rightarrow a-1< 0\)
d) Để x là một số nguyên
\(x=\dfrac{5}{a-1}\) \(\in Z\)
\(\Rightarrow a-1⋮5\)
\(\Rightarrow a-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
a-1 | 1 | -1 | 5 | -5 |
a | 2 | 0 | 6 | -4 |
Vậy a= 2; 0; 6; -4