K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2020

Áp dụng công thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)

Ta có \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right)\)

\(\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)

=> \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\end{cases}}\)

(1)(2)(3) => \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=> \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)

18 tháng 2 2020

Áp dụng bất đẳng thức : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( với x , y > 0 )
Ta có : \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right);\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)

Suy ra : 

\(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)

Tường tự ta có : 

\(\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\)

\(\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\)

Từ (1) , (2) và (3) 

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu " = " xảy ra khi \(x=y=z=\frac{3}{4}\)

Chúc bạn học tốt !!!

23 tháng 5 2020

địt mẹ laaaaaa

14 tháng 3 2018

Theo Cauche có: 

\(\left(x+x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\sqrt[4]{x^2yz}.4\sqrt[4]{\frac{1}{x^2.y.z}}=16\)

=> \(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\). Tương tự có: 

\(\frac{2}{y}+\frac{1}{x}+\frac{1}{z}\ge\frac{16}{x+2y+z}\) và \(\frac{2}{z}+\frac{1}{y}+\frac{1}{x}\ge\frac{16}{x+y+2z}\)

=> \(16.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{2}{y}+\frac{1}{x}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}+\frac{1}{y}\)

\(16.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le4.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=4.4=16\)

Chia cả 2 vế cho 16 => ĐPCM

27 tháng 2 2020

Bài này áp dụng BĐT này nhé , với x,y > 0 ta có :

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( Cách chứng minh thì chuyển vế quy đồng nhé )

Áp dụng vào bài toán ta có :

\(\frac{1}{2x+y+z}=\frac{1}{4}\left(\frac{4}{\left(x+y\right)+\left(z+x\right)}\right)\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{z+x}\right)=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{z+x}\right)\)

                                                           \(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

\(\Rightarrow\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)\)

Tương tự ta có :

\(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Do đó : \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(x+y+z\right)=1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{3}{4}\) (đpcm)

27 tháng 2 2020

Ta có: \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

                  \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

Cộng vế theo vế có: \(VT\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)

10 tháng 12 2017

bạn ơi hình như có chút sai đề

23 tháng 5 2019

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)

\(=\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}+\frac{1}{\left(x+z\right)+\left(y+z\right)}\)

\(\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)=1\)

\("="\Leftrightarrow x=y=z=\frac{3}{4}\)

23 tháng 5 2019

Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:

\(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\)

\(\Rightarrow\frac{1}{16}.\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{2x+y+z}\)

CMTT: \(\frac{1}{x+2y+z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\), \(\frac{1}{x+y+2z}\le\frac{1}{16}.\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

\(\Rightarrow\Sigma\frac{1}{2x+y+z}\le\frac{1}{16}.4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)=\frac{1}{16}.16=1\)

\(''=''\Leftrightarrow x=y=z=\frac{3}{4}\)

20 tháng 11 2016

\(\frac{x+y+z+1}{x}=\frac{x+y+x+2}{y}=\frac{x+y+z-3}{z}=\frac{3x+3y+3z}{x+y+z}=3\Leftrightarrow x+y+z=1\)

\(\Leftrightarrow\frac{3}{2x}=\frac{5}{2y}=\frac{-5}{2z}=\frac{3}{2}\left(???\right)\)

26 tháng 4 2020

\(\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2z^2+3}+\frac{1}{z^2+2x^2+3}\)

\(\frac{1}{x^2+y^2+y^2+1+2}+\frac{1}{y^2+z^2+z^2+1+2}+\frac{1}{z^2+x^2+x^2+1+2}\)

\(\le\frac{1}{2xy+2y+2}+\frac{1}{2yz+2z+2}+\frac{1}{2zx+2x+2}\)

\(\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

\(\frac{1}{2}\left(\frac{zx}{xyzx+yzx+zx}+\frac{x}{yzx+zx+x}+\frac{1}{zx+x+1}\right)\)

\(\frac{1}{2}\left(\frac{zx}{x+1+zx}+\frac{x}{1+zx+x}+\frac{1}{zx+x+1}\right)\)

= 1/2

Dấu "=" xảy ra <=> x = y =z =1 

26 tháng 4 2020

Áp dụng BĐT AM-GM ta có:\(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+1\ge2y\end{cases}\Rightarrow\frac{1}{x^2+2y^2+3}\le\frac{1}{2xy+2y+2}}\)

Tương tự ta cũng có

\(\frac{1}{y^2+2x^2+3}\le\frac{1}{2yz+2z+2};\frac{1}{z^2+2x^2+3}\le\frac{1}{2xz+2x+2}\)

Do đó ta có:\(VT\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Mặt khác, do xyz=1 nên ta có:

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{1}{xy+y+1}+\frac{y}{xy+y+1}+\frac{xy}{xy+y+1}\)

\(=\frac{xy+y+1}{xy+y+1}=1\)

\(\Rightarrow VT\le\frac{1}{2}\). Dấu "=" xảy ra <=> x=y=z=1