số chính phương là chi ??
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số chính phương liên tiếp lần lượt là \(n^2,\left(n+1\right)^2\) (\(n\in N^{\text{*}}\))
Ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2\left(n+1\right)^2+n^2+\left(n^2+2n+1\right)\)
\(=n^2\left(n+1\right)^2+2n\left(n+1\right)+1=\left[n\left(n+1\right)+1\right]^2\)
Dễ thấy n(n+1) chia hết cho 2 vì là tích của hai số tự nhiên liên tiếp => n(n+1) là số chẵn => n(n+1) + 1 là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là một số chính phương lẻ.
Vậy ta có điều phải chứng minh.
Số chính phương nhỏ nhất có 3 chữ số là 100
Vì 100 = 102
ta có :
aabb = a.1000+a.100+b.10+b
= a. 1100 + b .11
= 11 . ( a.100+b)
Mà aabb là số chính phương hay bình phương của 1 số có 2 chữ số
=> Số đó là 88
=> aabb = 7744
=> a+b= 7+4
= 11
vậy a+b=11
Tổng 10 số chính phương đầu tiên là :
\(1^2+2^2+3^2+...+10^2=\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)
Vậy tổng của 10 số chính phương đầu tiên là 385
ta có: (n-1)n(n+1)(n+2) +1=[n(n+1)][(n-1)(n+2)] +1
=(n^2 +n)(n^2 +n -2) +1 (*)
Đặt n^2 +n =a
(*)<=> a(a-2) +1= a^2 -2a+1= (a-1)^2 là số chính phương
=>điều phải chứng minh
Tick nha Thanh Nguyễn Vinh
Số chính phương là số có thể viết được dưới dạng bình phương của 1 số tự nhiên. TICK mình nhé ~~
cậu tick tớ đi rồi tớ tick cho