bài 1 tính
a) A=\(4\)\(+2^2\)\(2^3+2^4+...+2^{20}\)
b)tìm x : (x+1)+(x+2)+...+(x+100)=5750
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2A=8+2^3+2^4+...+2^{21}\)
\(\Rightarrow2A-A=2^{21}+8-\left(4+2^2\right)+\left(2^3-2^3\right)+...+\left(2^{20}-2^{20}\right)=2^{21}\)
a, A=4+2^2+2^3+...+2^20
2A=2(4+2^2+2^3+...+2^20)
2A=8+2^3+2^4+...+2^21
2A-A=(8+2^3+2^4+...+2^21)-(4+2^2+2^3+...+2^20)
A=2^21+8-4-2^2
A=2^21
Vay
a) A=\(2^{21}\)
b)
(x+1)+(X+2)+...+(x+100)=5750
=> 100x+(1+2+3+...+100)=5750
=> 100x+\(\frac{\left(100+1\right).100}{2}=5750\)
=> 100x+5050=5750
=>100x=700
=>x=7
a,2A=8+23+24+25+............+221
2A-A=(8+23+24+25+...........+221)-(4+22+23+24+.............+220)
A=(8+23+221)-(4+22)
A=8+8+221-4-4
A=4+4+221
A=23+221
b,(x+1)+(x+2)+.............+(x+100)=5750
=>x+1+x+2+...........+x+100=5750
=>100x+(1+2+............+100)=5750
=>100x+\(\frac{100.\left(100+1\right)}{2}\)=5750
=>100x+5050=5750
=>100x=5750-5050
=>100x=700
=>x=700:100
=>x=7
A=4+22+23+24+...+220
=22+22+23+24+...+220
=>2A=23+23+24+...+221
=>2A-A=23+23+24+...+221-22-22-23-24-...-220
=>A(2-1)=23+221-22-22
=>A=8+221-4-4
=>A=221
a,
A = 4 + 22 + 23 + 24 + .. + 220
Đặt A1 = 22 + 23 + 24 + .. + 220
2A1 = 2.( 22 + 23 + 24 + .. + 220)
= 23 + 24 + 25 + ... + 22
2A1 - A1 = (22 + 23 + 24 + .. + 220) - (23 + 24 + 25 + ... + 22 )
A1 = 221 - 22
= 221 - 4
=> A = 4 + 221 - 4
=> A = 221
mình bik giải câu b thôi
TA CÓ
(x+1)+(x+2)+.................+(x+100)=5750
x+1+x+2+..............+x+100=5750
(x+x+....+x)+(1+2+3+.......+100)=5750
100.x + 5050 =5750
100.x=5750-5050
100x=700
=>x=700:100=7
VẬY X = 7
A. \(\left(x+1\right)+\left(x+2\right)+......+\left(x+100\right)=5750\)
\(x+1+x+2+....+x+100=5750\)
\(100x+\left(1+2+3+.......+100\right)=5750\)
\(100x+5050=5750\)
\(100x=700\)
\(x=700:100=7\)
B. x+(1+2+......+100) = 2000
x + 5050 = 2000
x = 2000 - 5050
x= -3050
C. ( x-1 )+(x-2)+......+( x - 100 ) = 50
x-1+x-2+.........+x-100 = 50
100x + ( -1-2-........-100 ) = 50
100x + ( - 5050 ) = 50
100x = 50 + 5050
100 x = 5100
x = 5100 : 100
x = 51
A . \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(\Rightarrow x=\frac{700}{100}=7\)
B. \(x+\left(1+2+3+4+5+....+100\right)=2000\)
\(x+\frac{\left(100+1\right).100}{2}=2000\)
\(x+5050=2000\)
\(\Rightarrow x=2000-5050=-3050\)
C. \(\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+....+\left(x-100\right)=50\)
\(\left(x+x+x+...+x\right)-\left(1+2+3+...+100\right)=50\)
\(100x-5050=50\)
\(100x=5100\)
\(\Rightarrow x=\frac{5100}{100}=51\)
a)A=221
b)x=7