tính s=1*2+2*3+3*4+...+99*100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
A=1.2+2.3+3.4+.......+99.100
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100= 99.100.101
=> A = (99.100.101)/3
A = 333300
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
S = 1.2.3.4 + 2.3.4.5 + 3.4.5.6+...97.98.99.100
5S = (1.2.3.4+2.3.4.5+3.4.5.6+ ... + 97.98.99.100).5
5S = 1.2.3.4.(5-0) + 2.3.4.5.(6-1)+ 3.4.5.6(7-2)+......+ 97.98.99.100.(101-96)
5S = (1.2.3.4.5 + 2.3.4.5.6 + 3.4.5.6.7 + ....+ 97.98.99.100.101) - (0.1.2.3.4 + 1.2.3.4.5 + 2.3.4.5.6+.....+96.97.98.99.100)
5S = 97.98.99.100.101
S= 97.98.99.100.101/5
S=1901009880
S=1*2*3*4+2*3*4*5+....+97*98*99*100
5S=1.2.3.4.5+2.3.4.5.5+...+97.98.99.100.5
5S=1.2.3.4.(5-0)+2.3.4.5.(6-1)+...+97.98.99.100.(101-96)
5S=1.2.3.4.5-0.1.2.3.4+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100
5S=(1.2.3.4.5+2.3.4.5.6+...+97.98.99.100.101)-(0.1.2.3.4+1.2.3.4.5+...+96.97.98.99.100)
5S=97.98.99.100.101
S=9505049400:5=1901009880.
Bạn nhìn thì cũng không quá khó để nhận ra quy luật trong S
\(\frac{1}{1},\)\(\frac{1+2}{2},\)\(\frac{1+2+3}{3},\)\(\frac{1+2+3+4}{4},\)..., \(\frac{1+2+...+100}{100},\)
Công thức tính tổng \(1+2+3+..+n\)(với \(n\)là số nguyên dương) là \(\frac{n\cdot\left(n+1\right)}{2}\)
Vì vậy mỗi số hạng trong \(S\)có thể rút gọn thành \(\frac{1+2+3+...+n}{n}=\frac{\frac{n\left(n+1\right)}{2}}{n}=\frac{n+1}{2}\)
Do đó
\(S=\frac{\left(1+1\right)}{2}+\frac{\left(2+1\right)}{2}+\frac{\left(3+1\right)}{2}+..+\frac{\left(100+1\right)}{2}=\frac{1}{2}\left(2+3+4+..+101\right)\)
\(S=\frac{1}{2}\left(\frac{101\cdot102}{2}-1\right)=2575\)
Chúc bạn học tốt!
(P/S : giải thích dòng cuối : Tổng từ 2 tới 101? Lấy tổng từ 1 tới 101 rồi trừ đi 1 nếu không nhớ cách làm của Gauss nha, không thì cứ nhớ câu này "Dĩ đầu cộng vĩ, chiết bán nhân chi" (lấy đầu cộng cuối, chia 2, nhân số số hạng))
S = 1 x 2 + 2 x 3 + 3 x 4 + ... + 99 x 100
3S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
3S = 1 x 2 x (3 - 0) + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + ... + 99 x 100 x (101 - 98)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 2 x 3 x 4 x 1 + 3 x 4 x 5 - 3 x 4 x 2 + ... + 99 x 100 x 101 - 99 x 100 x 98
S = 99 x 100 x 101 : 3
S = 333300
Bài này chưa chắc đã đúng nhé, bạn nên hỏi ý kiến các bạn khác hoặc thầy cô
Nếu thấy chắc chắn rồi hãy tick cho tớ nha! Điều đó giúp cho tớ rất nhiều đấy!