K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

Chọn D.

+ Ta có số đo cung 

+ Ta có 

+ Để mút cuối cùng trùng với một trong bốn điểm M; N; P; Q thì chu kì của cung α là 

Vậy số đo cung 

16 tháng 4 2017

Chọn A.

+ Vì L  là điểm chính giữa 

+ Vì N  là điểm chính giữa 

+ Ta có 

Vậy L  hoặc N  là mút cuối của 

Trên một tờ giấy có kẻ dòng, chọn khoảng cách giữa hai dòng làm đơn vị độ dài, vẽ 5 đường tròn cùng tâm I có bán kính lần lượt bằng 1, 2, 3, 4, 5 (đơn vị độ dài). Đánh dấu các đường tròn này theo thứ tự là (1), (2), (3), (4), (5). Trên một tờ giấy kính, kẻ hệ trục tọa độ Oxy, trên tia Oy lấy điểm K sao cho OK = ½ (đơn vị độ dài nói trên). Lấy điểm H(0 ; -1/2). Qua H kẻ đường...
Đọc tiếp

Trên một tờ giấy có kẻ dòng, chọn khoảng cách giữa hai dòng làm đơn vị độ dài, vẽ 5 đường tròn cùng tâm I có bán kính lần lượt bằng 1, 2, 3, 4, 5 (đơn vị độ dài). Đánh dấu các đường tròn này theo thứ tự là (1), (2), (3), (4), (5). Trên một tờ giấy kính, kẻ hệ trục tọa độ Oxy, trên tia Oy lấy điểm K sao cho OK = ½ (đơn vị độ dài nói trên). Lấy điểm H(0 ; -1/2). Qua H kẻ đường thẳng Ht // Ox.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

- Đặt tờ giấy kính lên tờ giấy đã vẽ 5 đường tròn sao cho đường tròn (1) đi qua K và tiếp xúc với Ht và tâm I nằm bên phải Oy. Trên tờ giấy kính, đánh dấu vào chỗ điểm I xuất hiện và kí hiệu là điểm A.

- Di chuyển tờ giấy kính sang trái sao cho đường tròn (2) đi qua K và tiếp xúc với Ht. Trên tờ giấy kính, đánh dấu vào chỗ điểm I xuất hiện và kí hiệu là điểm B (xem hình dưới).

- Tiếp tục làm như thế đối với các đường tròn còn lại ta lần lượt được các điểm C, D, E trên tờ giấy kính.

- Lấy các điểm A’, B’, C’, D’, E’ lần lượt đối xứng với các điểm A, B, C, D, E qua Oy.

- Nối các điểm E’, D’, C’, B’, A’, A, B, C, D, E bởi một đường cong ta được một parabol.

1
28 tháng 9 2017

Học sinh thực hiện theo hướng dẫn.

29 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi O1 , O2 ,O3 lần lượt là tâm của ba đường tròn

Ta có: ( O 1 ) cắt ( O 2 ) tại A, ( O 2 ) cắt ( O 3 ) tại C , ( O 3 ) cắt ( O 1 ) tại B

Suy ra: D là điểm nằm trên ( O 3 )

DB cắt ( O 1 ) tại M, DC cắt ( O 2 ) tại N

Nối MA, NA, PA, PB, PC ta có các tứ giác nội tiếp AMBP, BDCP và APCN

*Tứ giác APBM nội tiếp trong đường tròn ( O 1 ) nên ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chơi mà học : Vẽ parabol  Trên một tờ giấy có kẻ dòng, chọn khoảng cách giữa hai dòng làm đơn vị độ dài, vẽ 5 đường tròn cùng tâm I có bán kính lần lượt bằng 1, 2, 3, 4, 5 (đơn vị độ dài). Đánh dấu các đường tròn này theo thứ tự là (1), (2), (3), (4), (5). Trên một tờ giấy kính, kẻ hệ trục tọa độ Oxy, trên tia Oy lấy điểm K sao cho \(OK=\dfrac{1}{2}\) (đơn vị độ dài nói trến)....
Đọc tiếp

Chơi mà học :

Vẽ parabol 

Trên một tờ giấy có kẻ dòng, chọn khoảng cách giữa hai dòng làm đơn vị độ dài, vẽ 5 đường tròn cùng tâm I có bán kính lần lượt bằng 1, 2, 3, 4, 5 (đơn vị độ dài). Đánh dấu các đường tròn này theo thứ tự là (1), (2), (3), (4), (5). Trên một tờ giấy kính, kẻ hệ trục tọa độ Oxy, trên tia Oy lấy điểm K sao cho \(OK=\dfrac{1}{2}\) (đơn vị độ dài nói trến). Lấy điểm \(H\left(0;-\dfrac{1}{2}\right)\). Qua H kẻ đường thẳng Ht // Ox

- Đặt tờ giấy kính lên tờ giấy đã vẽ năm đường tròn sao cho đường tròn (1) đi qua K và tiếp xúc với Ht và tâm I nằm bên phải Oy. Trên tờ giấy kính, đánh dấu vào chỗ điểm I xuất hiện và kí hiệu là điểm A

- Di chuyển tờ giấy kính sang trái sao cho đường tròn (2) đi qua K và tiếp xúc với Ht. Trên tờ giấy kính, đánh dấu vào chỗ điểm I xuất hiện và kí hiệu là điểm B (xem hình 4)

- Tiếp tục làm như thế đối với các đường tròn còn lại ta lần lượt được các điểm C, D, E trên tờ giấy kính

- Lấy các điểm A', B', C', D' , E' lần lượt đối xứng với các điểm A, B, C, D, E qua Oy

- Nối các điểm E', D', C', B', A', O, A, B, C, D, E bới một đường cong ta được một parabol

 

1
2 tháng 10 2022

chịu

23 tháng 5 2017

 

Vì DPN+DQN=90o+90o=180o nên DPNQ là tứ giác nội tiếp

=>QPN=QDN (hai góc nội tiếp cùng chắn cung QN) (5)

Mặt khác DENF là tứ giác nội tiếp nên QDN=FEN  (6)

Từ (5) và (6) ta có FEN=QPN (7)

Tương tự ta có: EFN=PQN  (8)

Từ (7) và (8) suy ra  Δ N P Q ~ Δ N E F ( g . g ) = > P Q E F = N Q N F

Theo quan hệ đường vuông góc – đường xiên, ta có

N Q ≤ N F = > P Q E F = N Q N F ≤ 1 = > P Q ≤ E F

Dấu bằng xảy ra khi Q ≡ F NF DF D, O, N thẳng hàng.

Do đó PQ max khi M là giao điểm của AC và BN, với N là điểm đối xứng với D qua O.

13 tháng 11 2023

a: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>BE\(\perp\)AM

Xét (O) có

ΔAFB nội tiếp

AB là đường kính

Do đó: ΔAFB vuông tại F

=>BF\(\perp\)AN

Xét ΔABM vuông tại B có BE là đường cao

nên \(AE\cdot MA=AB^2\left(1\right)\)

Xét ΔABN vuông tại B có BF là đường cao

nên \(AF\cdot AN=AB^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AM=AF\cdot AN\)