K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

Đáp án :D

+Ta có hai đường thẳng AB và AC cắt nhau tại A nên tọa độ điểm A là nghiệm hệ phương trình:

5 x - 2 y + 6 = 0 4 x + 7 y - 21 = 0 → A ( 0 ; 3 )   v à   A H → ( 1 ; - 2 )

+Ta có BH vuông góc với AC nên đường thẳng BH qua  H(1;1) và nhận vecto  u → ( 4 ;   7 )  làm VTCP và  u → ( 7 ;   - 4 )  làm VTPT

Suy ra phương trình đường thẳng BH là:

7( x-1) – 4( y-1) =0

=> 7x- 4y -3= 0

+ ta có  AB và BH cắt nhau tại B nên tọa độ điểm B là nghiệm hệ phương trình:

+Phương trình BC nhận  A H → ( 1 ; - 2 )  là VTPT và qua  B ( - 5 ;   - 19 2 )

Suy ra phương trình (BC) :

Hay x-2y-14= 0 .

5 tháng 11 2017

Giải bài 1 trang 29 sgk Hình học 11 | Để học tốt Toán 11

+ ΔABC nhọn ⇒ trực tâm H nằm trong ΔABC.

+ Gọi A’ = V(H; ½) (A)

Giải bài 1 trang 29 sgk Hình học 11 | Để học tốt Toán 11

⇒ A’ là trung điểm AH.

+ Tương tự :

B’ = V(H; ½) (B) là trung điểm BH.

C’ = V(H; ½) (C) là trung điểm CH.

⇒ V(H; ½)(ΔABC) = ΔA’B’C’ với A’; B’; C’ là trung điểm AH; BH; CH.

17 tháng 9 2023

Giả sử tam giác ABC có H vừa là trực tâm, vừa là trọng tâm tam giác ABC. Ta phải chứng minh tam giác ABC đều.

Vì H là trọng tâm tam giác ABC nên AD, BE, CF vừa là các đường cao, vừa là các đường trung tuyến trong tam giác.

Suy ra: AF = BF = AE = CE = BD = CD;

\(AD \bot BC; BE \bot AC; CF \bot AB\)

Xét tam giác ADB và tam giác ADC có:

     AD chung

    \(\widehat{ADB}=\widehat{ADC} (=90^0)\)

     BD = CD (là trung điểm của đoạn thẳng BC).

Vậy \(\Delta ADB = \Delta ADC\)(c.g.c) nên AB = AC ( 2 cạnh tương ứng).

Tương tự, ta cũng được, AC = BC

Xét tam giác ABC có AB = AC = BC nên là tam giác đều.

Vậy tam giác ABC có trực tâm H cũng là trọng tâm của tam giác thì tam giác ABC đều.

22 tháng 10 2019

Trong ΔABC ta có H là trực tâm nên:

AH ⊥ BC, BH ⊥ AC, CH ⊥ AB

Trong ΔAHB, ta có:

       AC ⊥ BH

       BC ⊥ AH

Vì hai đường cao kẻ từ A và B cắt nhau tại C nên C là trực tâm của tam giác AHB.

Trong ΔHAC, ta có:

       AB ⊥ CH

       CB ⊥ AH

Vì hai đường cao kẻ từ A và C cắt nhau tại B nên B là trực tâm của ΔHAC.

Trong ΔHBC, ta có:

       BA ⊥ HC

       CA ⊥ BH

Vì hai đường cao kẻ từ B và C cắt nhau tại A nên A là trực tâm của tam giác HBC.

16 tháng 1 2021

Tọa độ điểm C:

\(\left\{{}\begin{matrix}x_C=3x_I-x_A-x_B=1\\y_C=3y_I-y_A-y_B=-4\end{matrix}\right.\Rightarrow C\left(1;-4\right)\)

Ta có: 

\(\overrightarrow{AH}=\left(a-3;b+1\right)\)

\(\overrightarrow{BH}=\left(a+1;b-2\right)\)

\(\overrightarrow{BC}=\left(2;-6\right)\)

\(\overrightarrow{AC}=\left(-2;-3\right)\)

Theo giả thiết 

\(AH\perp BC\Rightarrow2\left(a-3\right)-6\left(b+1\right)=0\Leftrightarrow a-3b=6\left(1\right)\)

\(BH\perp AC\Rightarrow-2\left(a+1\right)-3\left(b-2\right)=0\Leftrightarrow2a+3b=4\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}a=\dfrac{10}{3}\\b=-\dfrac{8}{9}\end{matrix}\right.\Rightarrow a+3b=\dfrac{2}{3}\)

8 tháng 3 2018

Chọn D.

Gọi H (x; y) là trực tâm tam giác ABC nên 

Suy ra:

Vậy H(2; 2).