Cho hình trụ có bán kính đáy bằng 3 cm, độ dài đường cao bằng 4 cm. Tính diện tích xung quanh của hình trụ này.
A. 24 π ( cm 2 )
B. 22 π ( cm 2 )
C. 26 π ( cm 2 )
D. 20 π ( cm 2 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có p = 2 πr = 2 π cm
Diện tích của mặt bên là diện tích của hình chữ nhật có chiều dài bằng chu vi hình tròn đáy và chiều rộng bằng chiều cao hình trụ.
S = 6 . 4 π = 24 π Chọn phương án A.
Lời giải:
Khái niệm đường sinh quen thuộc trong hình nón.
Như đề của bạn thì đường sinh chính là đường cao? Thế thì thể tích hình trụ: $\pi r^2h=\pi 3^2.2=18\pi$ (cm khối)
Nhưng mà diện tích xung quanh thì là: $2\pi rh=12\pi$ (cm vuông)
Thể tích và diện tích so sánh với nhau sao được?
Đáp án D
Hướng dẫn giải: Dễ dàng ta nhận thấy được
S = 2 πR . h = 8 π
Lời giải:
Gọi bán kính đáy của hình trụ là $r$ thì chiều cao $h=4r$
Diện tích xung quanh: $S_{xq}=2\pi rh =2r.4r\pi = 8r^2\pi = 288\pi$
$\Rightarrow r^2=36\Rightarrow r=6$ (cm)
\(S_{xq}=2\pi R.h=2\pi.5.7=70\pi\left(cm^2\right)\)
\(\Rightarrow B\)
-Chúc bạn học tốt-
1:
V=pi*r^2*h
=>r^2*15*pi=375pi
=>r^2=25
=>r=5
Sxq=2*pi*r*h=2*5*15*pi=150pi
Đáp án A
Ta có p = 2 π r = 6 π (cm)
Diện tích của mặt bên là diện tích của hình chữ nhật có chiều dài bằng chu vi hình tròn đáy và chiều rộng bằng chiều cao hình trụ.
=> S = 6 π .4 = 24 π => Chọn phương án A.