K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

Đáp án đúng : D 

5 tháng 4 2021

Gọi giao điểm của (P) và (d) tại điểm có hoành độ -1 là A(-1;y)

Vì A thuộc (P) => y= 1/2 . (-1)^2 = 1/2 

=> A (1/2;-1)

Vì A thuộc (d)

=> 1/2 = -1 -2m

=> 2m = -1 -1/2 =-3/2

=> m=-3/4

5 tháng 6 2021

G/s (P),(d),(d1) cùng đi qua một điểm

Gọi I(a,b) là giao điểm của (P),(d),(d1)

Có \(I\in\left(P\right),\left(d\right),\left(d1\right)\)\(\Rightarrow\left\{{}\begin{matrix}b=a^2\left(1\right)\\b=a+2\left(2\right)\\b=-a+m\left(3\right)\end{matrix}\right.\)

Từ (1);(2)\(\Rightarrow a^2=a+2\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-1\end{matrix}\right.\)

TH1: Tại \(a=2\Rightarrow b=a^2=4\)

Thay \(a=2;b=4\) vào (3) ta được:\(4=-2+m\) \(\Leftrightarrow m=6\)

TH2: Tại \(a=-1\Rightarrow b=a^2=1\)

Thay \(a=-1;b=1\) vào (3) ta được:\(1=1+m\) \(\Leftrightarrow m=0\)

Vậy m=6 hoặc m=0

5 tháng 6 2021

Phương trình hoành độ giao điểm của (d) và (P):

\(x^2=x+2\)

\(\Leftrightarrow x^2-x-2=0\)(*)

Ta có: \(a-b+c=1-\left(-1\right)+\left(-2\right)=0\)

Do đó phương trình (*) có 2 nghiệm phân biệt

\(x_1=-1;x_2=\dfrac{-c}{a}=2\)

\(x_1=-1\) thì \(y_1=x_1^2=\left(-1\right)^2=1\)

\(x_2=2\) thì \(y_2=x_2^2=2^2=4\)

Vậy (d) và (P) cắt nhau tại 2 điểm phân biệt \(A\left(-1;1\right);B\left(2;4\right)\)

Do đó các đồ thị của (P), (d) và \(\left(d_1\right)\)cùng đi qua 1 điểm 

\(\Leftrightarrow\left[{}\begin{matrix}A\in\left(d_1\right)\\B\in\left(d_1\right)\end{matrix}\right.\)               \(\Leftrightarrow\left[{}\begin{matrix}1=1+m\\4=-2+m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=6\end{matrix}\right.\)

Vậy khi m=0 hoặc m=6 thì các đồ thị của (P),(d) và cùng đi qua 1 điểm

-Chúc bạn học tốt-

NV
12 tháng 1 2022

Pt hoành độ giao điểm:

\(\sqrt{2x^2-2x-m}-x-1=0\)

\(\Leftrightarrow\sqrt{2x^2-2x-m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\2x^2-2x-m=x^2+2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-4x-1=m\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb \(x\ge-1\)

Từ đồ thị hàm \(y=x^2-4x-1\) ta thấy \(-5< m\le4\)

4 tháng 12 2021

a) Để đồ thị hàm số \(y=\left(m-2\right)x+2\) đồng biến trên R.

=> \(m-2>0.\)

<=> \(m>2.\)

b) Đồ thị hàm số \(y=\left(m-2\right)x+2\) song song với đường thẳng \(y=5x+1.\)

=> \(m-2=5.\)

<=> \(m=7.\)

4 tháng 12 2021

Câu 2

a) Để hs đã cho đồng biến trên R thì:

\(m-2>0\\ < =>m>2\)

b) Đề đths đã cho song song với đường thẳng \(y=5x+1\) thì:

\(m-2=5\\ < =>m=7\)

14 tháng 9 2018

Chọn A.

Ta có 

nên đồ thị hàm số có một đường tiệm cận ngang y = 0.

nên không tồn tại giới hạn 

Do vậy đồ thị hàm số chỉ có một tiệm cận ngang y = 0.

Để đồ thị hàm số có bốn đường tiệm cận thì phương trình   (1) có ba nghiệm phân biệt.

Số nghiệm của (2) là giao điểm của đường thẳng y = 1 –m và đồ thị hàm số 

Xét hàm số Ta có 

Bảng biến thiên

Dựa vào bảng biến thiên, ta thấy (2) có ba nghiệm phân biệt ⇔ -4 < 1-m < 0  ⇔ 1 < m < 5

31 tháng 12 2023

a: Thay m=2 vào y=(m-1)x+m-1, ta được:

y=(2-1)x+2-1=x+1

Phương trình hoành độ giao điểm là:

x+1=-x+1

=>2x=0

=>x=0

Thay x=0 vào y=x+1, ta được:

y=0+1=1

Vậy: Tọa độ giao điểm là A(0;1)

b: Thay x=3 và y=4 vào y=(m-1)x+m-1, ta được;

3(m-1)+m-1=4

=>4(m-1)=4

=>m-1=1

=>m=2

c: Để hai đường thẳng này cắt nhau thì \(m-1\ne-1\)

=>\(m\ne0\)