Cho hình chóp S. ABC, đáy ABC là tam giác vuông cân tại B có A C = a 2 , S A vuông góc với đáy, góc giữa SB với đáy bằng 60 0 . Tính diện tích mặt cầu tâm S và tiếp xúc với mặt phẳng (ABC)
A. 16 πa 2
B. 24 πa 2
C. 16 πa 3
D. 48 πa 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có 2 A B 2 = A C 2 = 2 a 2 2 ⇒ A B = 2 a
Mặt cầu tâm tiếp xúc với mặt phẳng (ABC) có bán kính
S A = A B tan 60 0 = 2 a 3
Diện tích mặt cầu tâm S là: S = 4 π 2 a 3 2 = 48 π a 2
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra S H ⊥ A B C
Ta có
S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12
Có S B , A B C = ∠ S B A = 60 °
Gọi M là trung điểm BC, khi đó
⇒ S B C , A B C = ∠ S M A
Có c o s ∠ S M A
Chọn đáp án B.