Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt phẳng đáy bằng 60 0 . Tính thể tích khối chóp S.ABCD
A. a 3 6 2
B. a 3 6 6
C. a 3 6
D. a 3 6 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi O là tâm đáy ABCD. Khi đó S O ⊥ A B C D
suy ra AO là hình chiếu vuông góc của SA lên mặt phẳng đáy. Khi đó góc giữa cạnh bên SA và đáy là S A O ^
Suy ra S A O ^ = 60 °
Vậy thể tích khối chóp là:
V = 1 3 . S O . S A B C D = a 3 6 6
Đáp án B
Ta có: 2 B I 2 = a 2 ⇒ B I = a 2 ; S I = B I tan 60 0 = a 3 2
Thể tích khối chóp S.ABCD là
V = 1 3 S I . S A B C D = 1 3 a 3 2 . a 2 = a 3 6 6
Đáp án A
Gọi O là tâm hình vuông ABCD, M là trung điểm CD.
Khi đó SO là đường cao hình chóp, góc SMO là góc giữa mặt bên và mặt đáy của hình chóp.
Đáp án D
Gọi O là giao AC và BD, M là trung điểm CD
Vì S.ABCD là hình chóp đều
=> O là hình chiếu của S trên (ABCD)
Ta có: OM ⊥ CD và SM ⊥ CD
Vậy
Đáp án D
Gọi O là tâm của hình vuông A B C D ⇒ S O ⊥ A B C D
vÌ S O ⊥ A B C D suy ra S A ; A B C D ^ = S A ; O A = S A O ^ ^ = 60 0
Tam giác S A O vuông tại O, Có tan S A O ^ = S O O A ⇒ S O = tan 60 0 . a 2 2 = a 6 2
Vậy thể tích khối chóp là V = 1 3 . S O . S A B C D = 1 3 . a 6 2 . a 2 = a 3 6 6