Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai.
A. 1 4
B. 3 4
C. 13 16
D. 3 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mỗi hành khách có 4 cách chọn 1 toa để lên tàu nên số cách 4 hành khách chọn toa để lên tàu là 4 4 = 256 cách. Suy ra n Ω = 256
Gọi A là biến cố: “một toa có 3 hành khách; một toa có 1 hành khách và hai toa không có hành khách”.
Chon 3 hành khách từ 4 hành khách và xếp 3 hành khách vừa chọn lên 1 trong 4 toa tàu có C 5 3 . 4 = 16 cách
Xếp hành khách còn lại lên 1 trong 3 toa tàu còn lại có 3 cách
Suy ra n(A) = 16 . 3 = 48
Vậy xác suất của biến cố cần tìm là P A = 48 256 = 3 16
Đáp án B
Đáp án B
Mỗi hành khách có 4 cách chọn 1 toa để lên tàu nên số cách 4 hành khách chọn toa để lên tàu là cách. Suy ra
Gọi A là biến cố: “một toa có 3 hành khách; một toa có 1 hành khách và hai toa không có hành khách”.
Chon 3 hành khách từ 4 hành khách và xếp 3 hành khách vừa chọn lên 1 trong 4 toa tàu có cách
Xếp hành khách còn lại lên 1 trong 3 toa tàu còn lại có 3 cách
Suy ra
Vậy xác suất của biến cố cần tìm là
Chọn A
Số phần tử không gian mẫu:
Gọi A là biến cố: Mỗi toa có ít nhất một khách lên tàu .
Có hai trường hợp:
TH1: Một toa có 3 khách 2 toa còn lại mỗi toa có 1 khách.
Trường hợp này có: (cách).
TH 2: Một toa có 1 khách 2 toa còn lại mỗi toa có 2 khách.
Trường hợp này có:(cách).
Số kết quả thuận lợi của biến cố A là: n(A) = 150(cách).
Xác suất của biến cố A :
Đáp án C.
Gọi là tập tất cả các dãy số trong đó là số toa mà hành khách thứ i lên
+ là tập các cách lên tàu sao cho có 2 toa có 3 người và mỗi toa còn lại 1 người
+ là tập các cách lên tàu sao cho có 2 toa có 2 người và 1 toa có 1 người
là biến cố “Mỗi toa đều có hành khách lên tàu”
Số cách lên toa của 7 người là:
Ta tìm số khả năng thuận lợi của A như sau
Chọn 3 toa có người lên:
Với toa có 4 người lên ta có: cách chọn
Với toa có 2 người lên ta có: cách chọn
Người cuối cùng cho vào toa còn lại nên có 1 cách
Theo quy tắc nhân ta có:
Do đó: .
Chọn A.