Tìm hệ số của x 5 trong khai triển P x = x + 1 6 + x + 1 7 + . . . + x + 1 12
A. 1715
B. 1711
C. 1287
D. 1716
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét khai triển: \(\left(x+1\right)^n\) với \(n\ge5\)
SHTQ: \(C_n^k.x^k\)
Số hạng chứa \(x^5\Rightarrow k=5\) có hệ số \(C_n^5\)
Hệ số của \(x^5\) trong khai triển đã cho:
\(C_6^5+C_7^5+C_8^5+...+C_{12}^5=...\)
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi
Xét khai triển: \(\left(2x-1\right)^n\) với \(n\ge5\)
SHTQ: \(C_n^k.\left(2x\right)^k.\left(-1\right)^{n-k}=C_n^k.2^k.\left(-1\right)^{n-k}.x^k\)
Số hạng chứa \(x^5\Rightarrow k=5\) có hệ số \(C_n^5.2^5.\left(-1\right)^{n-5}\)
Do đó hệ số của \(x^5\) trong khai triển đã cho là:
\(C_5^5.2^5.\left(-1\right)^0+C_6^5.2^5.\left(-1\right)^1+C_7^5.2^5.\left(-1\right)^2=...\)
\(C_n^0+C_n^1+C_n^2=11\)
\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)
\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)
\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)
\(5k-8=7\Rightarrow k=3\)
Hệ số: \(C_4^3=4\)