Giới hạn (nếu tồn tại và hữu hạn) nào sau đây dùng để định nghĩa đạo hàm của hàm số y = f(x) tại điểm x 0 ?
A. lim x → 0 f x + ∆ x - f x 0 ∆ x
B. lim x → 0 f x - f x 0 x - x 0
C. lim x → x 0 f x - f x 0 x - x 0
D. lim x → 0 f x + ∆ x - f x ∆ x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Cho hàm số f(x) có f ' x ≤ 0 ∀ x ∈ ℝ và f '(x) = 0 chỉ tại một số hữu hạn điểm thuộc R. Nên Hàm số f(x) nghịch biến trên R nên ∀ x 1 , x 2 ∈ K ; x 1 < x 2 ⇔ f x 1 > f x 2
Ta có x 1 − x 2 < 0 ; và f x 1 − f x 2 > 0 ⇒ f x 1 − f x 2 x 1 − x 2 < 0
Đáp án là C
Câu III sai vì thiếu dấu bằng chỉ xảy ra tại một số hữu hạn điểm trên I
Câu IV sai vì có thể vô số điểm trên I xuất hiện rời rạc thì vẫn có thể nghịch biến trên khoảng I
1. Áp dụng quy tắc L'Hopital
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)
2.
\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\)
2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm
Chọn C.
- Theo định nghĩa đạo hàm tại điểm x = x 0 .