Cho hình chóp S.ABC có hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Tam giác ABC đều, I là trung điểm của BC. Góc giữa hai mặt phẳng (SAI) và (SBC) là
A. 45 o
B. 90 o
C. 60 o
D. 30 o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Vì I là trung điểm B C ⇒ A I ⊥ B C
mà S A ⊥ A B C ⇒ S A ⊥ B C
Suy ra B C ⊥ S A I mà B C ⊂ S A C → S A I ⊥ S B C .
+ Ta có S A B ⊥ A B C S A C ⊥ A B C S A C ∩ S A B = S A ⇒ S A ⊥ A B C
+ Xác định điểm N, mặt phẳng qua SM và song song với BC cắt AC tại N ⇒ N là trung điểm của AC (MN//BC).
+ Xác định được góc giữa hai mặt phẳng (SBC) và (ABC) là S B A ^ = 60 °
⇒ SA = AB.tan 60 ° = 2a 3
AC = A B 2 + B C 2 = 2 a 2
+ Gọi IJ là đoạn vuông góc chung của AB và SN (điểm I thuộc AB và điểm J thuộc SN). Vậy khoảng cách giữa AB và SN là IJ. Ta sẽ biểu thị IJ → qua ba vectơ không cùng phương A B → ; A C → ; A S → .
I J → = I A → + A N → + N J → = m A B → + 1 2 A C → + p N S → = m A B → + 1 2 A C → + p N A → + A S → = m A B → + 1 − p 2 A C → + p A S →
Ta có: I J → ⊥ A B → I J → ⊥ N S → ⇔ I J → . A B → = 0 I J → . N S → = 0
Thay vào ta tính được m = -6/13; p = 1/13
Do đó: I J → = − 6 13 A B → + 6 13 A C → + 1 13 A S → . Suy ra
169 I J 2 = 36 A C 2 + 36 A B 2 + A S 2 − 72 A B → . A C → .
Thay số vào ta tính được IJ = 2 a 39 13 .
Vậy d(AB; SN) = 2 a 39 13 .
Đáp án D
Nhận xét
Gọi (α) là mặt phẳng qua SM và song song với AB.
Ta có BC // (α) và (ABC) là mặt phẳng chứa BC nên (ABC) sẽ cắt (α) theo giao tuyến d đi qua M và song song với BC, d cắt AC tại N.
Ta có (α) chính là mặt phẳng (SMN). Vì M là trung điểm AB nên N là trung điểm AC.
+ Xác định khoảng cách.
Qua N kẻ đường thẳng d’ song song với AB.
Gọi (P) là mặt phẳng đi qua SN và d’.
Ta có: AB // (P).
Khi đó: d(AB, SN) = d(A, (P)).
Dựng AD ⊥ d’, ta có AB // (SDN). Kẻ AH vuông góc với SD, ta có AH ⊥ (SDN) nên:
d(AB, SN) = d(A, (SND)) = AH.
Trong tam giác SAD, ta có
Trong tam giác SAB, ta có S A = A B . tan 60 o = 2 a 3 và AD = MN = BC/2 = a.
Thế vào (1), ta được
Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với (ABC) \(\Rightarrow SA\perp\left(ABC\right)\)
\(AB\perp BC\Rightarrow SB\perp BC\Rightarrow\widehat{SBA}\) là góc giữa 2 mặt phẳng (SBC) và mặt phẳng (ABC)
\(\Rightarrow\widehat{SBA}=60^o\)
\(\Rightarrow SA=AB.\tan\widehat{SBA}=2a\sqrt{3}\)
Mặt phẳng qua SM và song song với BC, cắt AC tại N
\(\Rightarrow MN||BC\) và N là trung điểm của \(AC\\ \)
\(MN=\frac{BC}{2}=a;BM=\frac{AB}{2}=a\)
Diện tích \(S_{BCNM}=\frac{\left(BC+MN\right).BM}{2}=\frac{3a^2}{2}\)
Thể tích \(V_{S.BCNM}=\frac{1}{3}S_{BCNM}.SA=a^3\sqrt{3}\)
Kẻ đường thẳng \(\Delta\) đi qua N, song song với AB
Hạ \(AD\perp\Delta\left(D\in\Delta\right)\Rightarrow AB||\left(SND\right)\)
\(\Rightarrow d\left(AB;SN\right)=d\left(AB,\left(SND\right)\right)=d\left(A,\left(SND\right)\right)\)
Hạ \(AH\perp SD\left(H\in SD\right)\Rightarrow AH\perp\left(SND\right)\Rightarrow d\left(A,\left(SND\right)\right)=AH\)
Tam giác SAD vuông tại A : \(\begin{cases}AH\perp SD\\AD=MN=a\end{cases}\)
\(\Rightarrow d\left(AB,SN\right)=AH=\frac{SA.AD}{\sqrt{SA^2+AD^2}}=\frac{2a\sqrt{39}}{13}\)
Đáp án C
B C = A B . tan 30 0 = a 3 3 ⇒ A C = a 2 3 + a 2 = 2 3 3 a V = 1 3 . S A . 1 2 . A B . B C = 1 3 . S A . 1 2 . a . a 3 3 = a 3 3 36 ⇒ S A = a 2 S B = a 2 4 + a 2 = a 5 2 V = 1 3 . d ( A ; S B C ) . 1 2 . S B . B C = 1 3 . d . 1 2 . a 5 2 . a 3 3 = a 3 3 36 ⇒ d = a 5 5