K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

Đáp án D.

 

1 tháng 1 2018

Đáp án D

14 tháng 3 2017

Đáp án D.

6 tháng 1 2019

Đáp án D

NV
22 tháng 12 2022

Không gian mẫu: \(C_{15}^4\)

a.

Số cách lấy 4 viên bi trong đó có 3 viên màu đỏ: \(C_7^3C_8^1\)

Xác suất: \(P=\dfrac{C_7^3.C_8^1}{C_{15}^4}\)

b.

Lấy 4 viên không có viên đỏ nào (lấy từ 8 viên 2 màu còn lại): \(C_8^4\) cách

Lấy 4 viên có ít nhất 1 viên đỏ: \(C_{15}^4-C_8^4\)

Xác suất: \(P=\dfrac{C_{15}^4-C_8^4}{C_{15}^4}\)

c.

Các trường hợp thỏa mãn: (2 đỏ 1 xanh 1 vàng), (1 đỏ 2 xanh 1 vàng), (1 đỏ 1 vàng 2 xanh)

Số cách lấy: \(C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2\)

Xác suất: \(P=\dfrac{C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2}{C_{15}^4}\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số kết quả của phép thử có thể xảy ra là \(n(\Omega ) = C_{12}^4 = 495\)

a) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 1 bi xanh”, suy ra biến cố đối của biến cố A là \(\overline A \): “Trong 4 viên bi lấy ra không có viên bi xanh nào”

\(\overline A \) xảy ra khi 4 viên bi lấy ra chỉ có màu đỏ hoặc vàng. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_9^4 = 126\)

Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{126}}{{495}} = \frac{{14}}{{55}}\)

Vậy xác suất của biến cố  A là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{{14}}{{55}} = \frac{{41}}{{55}}\)

b) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 2 bi đỏ ”, suy ra biến cố đối của biến cố A là \(\overline A \): “Trong 4 viên bi lấy ra có nhiều hơn 2 bi đỏ”

\(\overline A \) xảy ra khi 4 viên bi lấy ra có 3 hoặc 4 bi đỏ. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_4^3.8 + C_4^4 = 33\)

Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{33}}{{495}} = \frac{1}{{15}}\)

Vậy xác suất của biến cố  A là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{15}} = \frac{{14}}{{15}}\)

24 tháng 5 2017

Lấy ngẫu nhiên một hộp

Gọi A là biến cố lấy được hộp A

Gọi B là biến cố lấy được hộp B

Gọi C là biến cố lấy được hộp C

Vậy  P(A) = P(B) = P(C) = 1/3

Gọi D là biến cố “ lấy ngẫu nhiên một hộp, trong hộp đó lại lấy ngẫu nhiên một viên bi và được bi đỏ ” là   

Do đó

    

Chọn D.

NV
4 tháng 1 2022

Không gian mẫu: \(n\left(\Omega\right)=C_{21}^6\)

Số cách lấy ít nhất 3 bi đỏ:

\(n_A=C_6^6+C_6^5.C_{15}^1+C_6^4.C_{15}^2+C_6^3.C_{15}^3=...\)

Xác suất:

\(P=\dfrac{n_A}{n\left(\Omega\right)}=...\)

7 tháng 12 2018

Đáp án là C