K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

Chọn B

Gọi n là số nguyên dương nhỏ hơn 26.

Ta có : 0 < n < 26, 

Chọn một chữ cái trong 24 chữ cái có 24 cách.

Chọn một số nguyên dương ( nhỏ hơn 26) có 25 cách.

Theo quy tắc nhân có : 24.25 = 600 cách ghi nhãn khác nhau.

1 tháng 12 2019

Đáp án : A

Giả sử mật khẩu là a1a2a3a4a5a6

 Có 26 cách chọn a1

 Có 9 cách chọn a2

 Có 10 cách chọn a3

 Có 10 cách chọn a4

 Có 10 cách chọn a5

 Có 10 cách chọn a6

Vậy theo qui tắc nhân ta có 26.9.10.10.10.10=2340000  mật khẩu.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Để gắn nhãn cho các ghế ta chọn chọn 1 chữ cái in hoa và 1 số (từ 1 đến 20).

Số cách chọn chữ cái in hoa: 26 cách (tương ứng với 26 chữ)

Số cách chọn số: 20 cách 

Vậy số ghế gắn nhãn tối đa là 26.20 = 520 (ghế)

12 tháng 7 2017

Đáp án C

Để tạo một biển số xe ta thực hiện các bước sau:

+ Chọn hai chữ cái cho phần đầu có 26 2  (mỗi chữ có 26 cách chọn)

+ Chọn 5 chữ số cho phần đuôi có 10 5  (mỗi chữ số có 10 cách chọn)

Vậy có thể tạo ra được 26 2 . 10 5  biển số xe

30 tháng 1 2017

Đáp án C

Để tạo một biển số xe ta thực hiện các bước sau:

+ Chọn hai chữ cái cho phần đầu có (mỗi chữ có 26 cách chọn)

+ Chọn 5 chữ số cho phần đuôi có (mỗi chữ số có 10 cách chọn)

Vậy có thể tạo ra được biển số xe

26 tháng 12 2023

Gọi số phần thưởng có thể được chia nhiều nhất là \(x\)(phần thưởng, \(x\inℕ^∗\))

Ta có:

\(374⋮x\\ 68⋮x\\ 340⋮x\)

\(x\) lớn nhất

\(\Rightarrow x=ƯCLN\left(374,68,340\right)\)

\(\Rightarrow\) Ta có:

\(374=2.187\\ 68=2^2.17\\ 340=2^2.5.17\)

⇒ BCNN(340,68,374) = 2.17 = 34

⇒ Vậy có thể chia được nhiều nhất 34 phần thưởng.

Mỗi phần thưởng có:

374 : 34 = 11(quyển vở)

68 : 34 = 2(cái thước)

340 : 34 = 10(nhãn vở)

23 tháng 12 2021

Gọi số phần thưởng nhiều nhất có thể chia được là a ( a ∈ N* )

374 ⋮ a ; 68 ⋮ a ; 340 ⋮ a => a ∈ ƯC ( 374,68,340 )

Ta có :

374 = 2 . 11 . 17

68 = 22 . 17

340 = 22 . 5 . 17

=> ƯCLN(374,68,340) = 2 . 17 = 34

Mỗi phần thưởng có số quyển vở là :

   374 : 34 = 11 ( quyển )

Mỗi phần thưởng có số cái thước là :

    68 : 34 = 2 ( cái )

Mỗi phần thưởng có số nhãn vở  là :

    340 : 34 = 10 ( nhãn )

Vậy .....

Người ta muốn chia 374 quyển vở, 68 cái thước và 340 nhãn vở thành một số phần
thưởng như nhau nên số phần thưởng nhiều nhất thuộc ƯCLN( 374;68;340)
Ta có 
374=2.11.17
68=2^2.17
340=2^2.5.17
=) UCLN (374; 68;340)=34
=) số phần thưởng nhiều nhất là 34

nhìn giống cái mặt cừi:>