K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

12 tháng 10 2019

Chọn C

Gọi H là trung điểm cạnh CD và K là trung điểm cạnh AD.

Tam giác ACD có CA=CD=x=a ; AD = a 2  => tam giác ACD vuông cân tại C

Mặt khác:

Tam giác ABD có:

Tam giác BHK có:

=> Tam giác BHK vuông tại H  ⇒ B H K ^ = 90 o   hay  A C D , B C D ^ = 90 o

27 tháng 5 2017

Đáp án C

Gọi h là khoảng cách từ B → A C D

⇒ h = a 3 2 ⇒ S Δ A C D = 3 V A B C D h = 3 a 3 3 12 a 3 2 = a 2 2  

Gọi M là trung điểm AD ⇒ C M ⊥ A D .

⇒ C M = 2 S A C D A D = 2. a 2 2 a 2 = a 2 2 = 1 2 A D

⇒ Δ A C D vuông tại C ⇒ C A = C D = a

Δ C A D = Δ C B A C . C . C ⇒ A C D ^ = A C B ^ = 90 0

⇒ A C ⊥ C D A C ⊥ C B ⇒ A C ⊥ B C D ⇒ A C D ⊥ B C D

Hay góc giữa hai mặt phẳng bằng 90 0

9 tháng 8 2019

29 tháng 10 2017

Chọn D.

Cách 1:

Gọi M là trung điểm của CD, ABMD là hình vuông cạnh bằng 1.

BM= 1 2 DC tam giác BCD vuông cân tại B.

Ta có: 

Cách 2: Gọi M là trung điểm của  CD, H  là trung điểm của  BD

=> Tam giác BCD vuông tại B.

+) Ta có: AH // (SBC)

Do đó 

 Tam giác SHB có

19 tháng 12 2017

26 tháng 8 2019

Đáp án C

Phương pháp giải:

Áp dụng công thức tính nhanh thể tích của tứ diện gần đều, đưa bài toán tính khoảng cách về bài toán tìm thể tích chia cho diện tích đáy (tính theo công thức Hê – rông)

Lời giải: 

3 tháng 1 2017

1 tháng 7 2018

18 tháng 3 2019

Đáp án A

Gọi H là hình chiếu của điểm A trên mặt phẳng(BCD). Do ABCD là tứ diện đều nên tâm H là tâm đường trong ngoại tiếp  Δ B C D .

Đặt cạnh của tứ diện là a. Gọi M  là trung điểm của CD.

Do Δ B C D  đều nên

B M = a 3 2 ⇒ B H = 2 3 B M = 2 3 . a 3 2 = a 3 3

Ta có   Δ A B H vuông tại H nên

A H = A B 2 − B H 2 = a 2 − a 3 3 2 = a 6 3

Từ giả thiết ta có

A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2

 (đvdt).

Vậy thể tích của tứ diện ABCD là

A H = a 6 3 = 6 ⇔ a = 3 6 ⇒ S Δ B C D = a 2 3 4 = 27 3 2

 (đvtt).