Hình chóp S.ABC có SB=SC=BC=CA=a Hai mặt phẳng (ABC) và (ASC) cùng vuông góc với (SBC) Thể tích khối chóp S.ABC bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Do hai mặt phẳng (ABC) và (ASC) cùng vuông góc với (SBC)
nên A C ⊥ S B C .
Lại có: S A B C = a 2 3 4 ; A C = a ⇒ V A . S B C = 1 3 A C . S S B C = a 3 3 12 .
Đáp án B
Phương pháp: Công thức tính thể tích khối chóp V = 1 3 S . h với S là diện tích đáy,h là chiều cao.
Chú ý tính chất hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng đó.
Cách giải: Ta có: A B C ⊥ S B C S B C ⊥ S B C A B C ∩ S A C = A C ⇒ A C ⊥ S B C
⇒ V = 1 3 S S B C . A C = 1 3 a a 2 3 4 = a 3 3 12
Chọn D.
Từ giả thiết ta suy ra hình chiếu vuông góc H của S trên (ABC) trùng với tâm đường tròn ngoại tiếp Δ A B C .Mà Δ A B C vuông tại B nên H là trung điểm của AC. Kẻ HK//AB. Ta suy ra, K là trung điểm của BC và ta có góc giữa mặt bên (SBC) tạo với đáy là góc S K H ^ = 60 0 . Ta có H K = a 2 ⇒ S H = a 3 2 và S Δ A B C = a 2 3 2
Vậy V S . A B C = 1 3 S H . S Δ A B C = 1 3 a 3 2 . a 2 3 2 = a 3 4
Đáp án D
Gọi H là trung điểm của BC ta có: A H ⊥ B C Do A B C ⊥ S B C ⇒ A H ⊥ S B C
Đặt A H = x ⇒ H C = a 2 − x 2 = H B = S H ⇒ Δ S B C
vuông tại S (do đường trùng tuyến bằng cạnh đối diện). Suy ra B C = S B 2 + S C 2 = a 3 . Gọi O là tâm đường tròn ngoại tiếp Δ A B C ⇒ O ∈ A H ⇒ O A = O B = O C = OS .Ta có: R = R A B C = A C 2 sin B , trong đó sin B = A H A B = A S 2 − S H 2 A B = 1 2 Do đó R C = a ⇒ S x q = 4 π R 2 C = 4 π a 2 .