Cho hình bình hành ABCD , lấy điểm M đối xứng với điểm D qua A . Gọi N là giao điểm của MC và AB
a) Chứng minh tứ giác AMBC là hình bình hành.
b) Chứng minh: MN = NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AECF là hình bình hành => EN // AM
E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.
Tương tự, M là trung điểm của DN, do đó DM = MN.
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: Xét ΔCDM có
F là trung điểm của CD
FN//DM
Do đó: N là trung điểm của CM
Suy ra: NM=NC(1)
Xét ΔANB có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
Suy ra: AM=MN(2)
từ (1) và (2) suy ra AM=MN=NC
cho em hỏi câu a sao góc MDB và góc CAD lại so le trong vậy ạ?
Bn tự vẽ hình nha
a, Xét tứ giác ABCD có
MA=MC=1/2AC( m là trung điểm AC-gt)
MB=MD=1/2BD(B đối D qua M-gt)
Mà BD cắt AC tại M
-> ABCD là hình bình hành
a) Do B và D đối xứng qua M
\(\Rightarrow\) M là trung điểm BD
Tứ giác ABCD có:
M là trung điểm AC (gt)
M là trung điểm BD (cmt)
\(\Rightarrow\) ABCD là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
b) Do ABCD là hình bình hành
\(\Rightarrow\) AB // CD và AB = CD
\(\Rightarrow\) AN // CD
Do B và N đối xứng nhau qua A
\(\Rightarrow AN=AB\)
Mà AB = CD (cmt)
\(\Rightarrow\) AN = CD
Do AB \(\perp\) AC (\(\Delta ABC\) vuông tại A)
\(\Rightarrow AN\perp AC\)
\(\Rightarrow\widehat{CAN}=90^0\)
Tứ giác ACDN có:
AN // CD (cmt)
AN = CD (cmt)
\(\Rightarrow ACDN\) là hình bình hành
Mà \(\widehat{CAN}=90^0\)
\(\Rightarrow ACDN\) là hình chữ nhật (hình bình hành có một góc vuông)
c) Gọi E là giao điểm của MN và BC
Do AK // MN (gt)
\(\Rightarrow AK\) // ME và AK // NE
\(\Delta BNE\) có
AK // NE
A là trung điểm BN
\(\Rightarrow\) K là trung điểm BE
\(\Rightarrow KB=KE\)
\(\Delta AKC\) có:
AK // ME (cmt)
M là trung điểm AC
\(\Rightarrow\) E là trung điểm CK
\(\Rightarrow\) KC = 2 KE
Mà KB = KE (cmt)
\(\Rightarrow\) KC = 2 KB
a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )
b. D là điểm đối xứng với B qua M =>BM=MD
Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường
=> ABCD là HBH
c. E đối xứng với A qua N => AN=NE
ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )
Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)
a: Xét tứ giác AMBC có
AM//BC
AM=BC
Do đó: AMBC là hình bình hành