Tính 3/2x5+3/5x8+...+3/17x20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{14}\) + \(\dfrac{1}{14}\) - \(\dfrac{1}{17}\) + \(\dfrac{1}{17}\) - \(\dfrac{1}{20}\)
= \(\dfrac{1}{2}\) - \(\dfrac{1}{20}\)
= \(\dfrac{9}{20}\)
Ta có :
\(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}\)
\(A=\frac{9}{20}\)
Vậy \(A=\frac{9}{20}\)
Chúc bạn học tốt ~
\(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}.\)
\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}\)
\(A=\frac{10}{20}-\frac{1}{20}\)
\(A=\frac{9}{20}\)
Mình ra kết quả thứ nhất là 17/60 thứ 2 là 9/20 các bạn thấy cái nào đúng
\(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}+\frac{1}{14\times17}+\frac{1}{17\times20}\)
\(=\frac{1}{3}\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}+\frac{3}{17\times20}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\times\frac{9}{20}\)
\(=\frac{3}{20}\)
_Chúc bạn học tốt_
Đặt \(A=\frac{1}{2x5}+\frac{1}{5x8}+..+\frac{1}{17x20}\)
\(3xA=3x\left(\frac{1}{2x5}+\frac{1}{5x8}+...+\frac{1}{17x20}\right)\)
\(3xA=\frac{3}{2x5}+\frac{3}{5x8}+....+\frac{3}{17x20}\)
\(3xA=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+..+\frac{1}{17}-\frac{1}{20}\)
\(3xA=\frac{1}{2}-\frac{1}{20}\)
\(3xA=\frac{9}{20}\)
\(\Rightarrow A=\frac{3}{20}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{7}{14}-\frac{1}{14}\)
\(=\frac{6}{14}\)
\(=\frac{3}{7}\)
3/2x5 + 3/5x8 + 3/8x11 + 3/11x14
= 3/2 - 3/5 + 3/5 - 3/8 + 3/8 - 3/11 + 3/11 - 3/14
= 3/2 - 3/14
= 21/14 - 3/14
= 18/14
= 9/5
\(B=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{26\cdot29}\)
\(B=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{26}-\dfrac{1}{29}\)
\(B=\dfrac{1}{2}-\dfrac{1}{29}\)
\(B=\dfrac{27}{58}\)
B= 3/2x5 + 3/5x8+ 3/8x11 + ... + 3/26x29
B= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/26 - 1/29
B= 1/2-1/29
B=27/58
Ta có : A=3/2x5+3/5x8+3/8x11+3/11x14+3/14x17+3/17x20
=> A=1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14+1/14-1/17+1/17-1/20
=> A=1/2-1/20
=> A=9/20
Vậy A=9/20
đó
`@` `\text {Ans}`
`\downarrow`
`A =`\(\dfrac{3}{2\times5}+\dfrac{3}{5\times8}+\dfrac{3}{8\times11}+...+\dfrac{3}{20\times23}+\dfrac{3}{23\times26}\)
`A=`\(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{23}-\dfrac{1}{26}\)
`A=`\(\dfrac{1}{2}-\dfrac{1}{26}\)
`A=`\(\dfrac{6}{13}\)
Vậy, `A=`\(\dfrac{6}{13}\).