K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

Gói số đó là a

Ta có:

a = 3k1 + 2 (k1 thuộc N) => a + 1 = 3k1 + 3 chia hết cho 3

a = 5k2 + 4 (k2 thuộc N) => a + 1 = 5k2 + 5 chia hết cho 5

a = 7k3 + 6 (k3 thuộc N) => a + 1 = 7k3 + 7 chia hết cho 7

=> a + 1 chia hết cho BCNN(3,5,7) = 105

Mà 105 chia hết cho 105

=> a + 1 - 105 chia hết cho 105

=> a - 104 chia hết cho 105

=> a - 104 = 105m (m thuộc N) => a = 105m + 104

Vì m nhỏ nhất = 0 => a nhỏ nhất  = 105.0 + 104 = 104

 

 

7 tháng 1 2016

53

tick nha!!!!!!!!!!!!!!!!!!!!!!!!!!

29 tháng 8 2023

ta có thể áp dụng phương pháp tìm kiếm thông qua vòng lặp.

Bước 1: Bắt đầu từ số 1, kiểm tra từng số tự nhiên lớn hơn 1 cho đến khi tìm được số thỏa mãn tất cả các điều kiện.

Bước 2: Dùng toán tử % để kiểm tra xem số đó có chia hết cho 5 dư 2 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.

Bước 3: Kiểm tra xem số đó có chia hết cho 4 dư 3 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.

Bước 4: Kiểm tra xem số đó có chia hết cho 5 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.

Bước 5: Kiểm tra xem số đó có chia hết cho 7 dư 6 hay không. Nếu không thỏa mãn, ta tiếp tục tăng số lên 1 và kiểm tra tiếp.

Bước 6: Khi tìm được số thỏa mãn tất cả các điều kiện, ta kết thúc vòng lặp và số đó là số tự nhiên bé nhất cần tìm.

Với các điều kiện đã cho, số tự nhiên bé nhất thỏa mãn là 122, vì 122 chia 5 dư 2, chia 4 dư 3, chia 5 dư 4 và chia 7 dư 6.

14 tháng 8 2017

839. Mk nghĩ vậy, nếu bn cần trình bày rõ ràng thì bn đáp lại nhá!!!

14 tháng 8 2017

bạn Nguyễn Hoài Oanh ơi đầy đủ hơn nhé bạn.

6 tháng 1 2016

số 29 nhé bạn

bài này giải theo kiểu lớp 6 thì dễ lắm

6 tháng 1 2016

các cậu không biết thì phải nói chứ

 

11 tháng 9 2016

Vì số đó chia 2 , 3 , 4 , 5 , 6 dư 1 , 2 , 3, 4 , 5 nên nếu lấy số đó cộng thêm 1 thì được số mới chỉ hết cho cả 2 , 3 , 4 , 5 , 6. Và số mới đó chia cho 7 dư 1 . 

Số chia hết cho đồng thời 2 và 3 thì chia hết cho 6 ; số chia hết cho 4 thì chia hết cho 2 . Vậy chỉ cần số mới chia hết cho 3 , 4 , 5 là nó chia hết cho cả 2 , 3 , 4 , 5 , 6 . Số chia hết cho 3 , 4 , 5 là các số : 60 , 120 , 180 , ....

Trong các số đó , số chia cho 7 dư 1 là 120 .Vậy số chia hết cho 2 , 3, 4 , 5 , 5 ; chia cho 7 dư 1 là : 120

Vậy số cần tìm là : 120 - 1 = 119

11 tháng 9 2016

Tìm số tự nhiên bé nhất chia cho 2 ,3,4,5,6 thì được các số dư lần lượt là 1,2,3,4,5 và khi chia cho 7 thì không dư .Tím số đó 

Vì số đó chia cho 2; 3; 4; 5; 6 dư 1; 2; 3; 4;5 nên nếu lấy số đó cộng thêm 1 thì được số mới chia hết cho cả 2; 3; 4; 5; 6. Và số mới đó chia cho 7 dư 1.

Số chia hết cho đồng thời 2 và 3 thì chia hết cho 6; số chia hết cho 4 thì chia hết cho 2. Vậy chỉ cần số mới chia hết cho 3; 4; 5 là nó chia hết cho cả 2; 3; 4; 5; 6. Số chia hết cho 3; 4; 5 là các số 60; 120; 180; . . .

Trong các số đó, số chia cho 7 dư 1 là 120. Vậy số chia hết cho 2; 3; 4; 5; 6 và chia cho 7 dư 1 là 120.

Suy ra số cần tìm là 120 - 1 = 119.

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
7 tháng 11 2017

Cách 1:Gọi số cần tìm là a 
Suy ra (a+2) chia hết cho cả 3,4,5,6 
Vậy (a+2) là Bội chung của 3,4,5,6 
=>(a+2)=60k (với k thuôc N) 
vì a chia hết 11 nên 
60k chia 11 dư 2 
<=>55k+5k chia 11 dư 2 
<=>5k chia 11 dư 2 
<=>k chia 11 dư 7 
=>k=11d+7 (với d thuộc N) 
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)

cách 2:Nhận xét: 
3 - 1 = 2 
4 - 2 = 2 
5 - 3 = 2 
6 - 4 = 2 
Gọi số cần tìm là a 
thì a + 2 chia hết cho cả 3,4,5,6 
Ta có 3 = 3 x 1 
4 = 2 x 2 
3 = 5 x 1 
6 = 3 x 2 
3 x 2 x 2 x 5 = 60 
a + 2 là bội của 60 
a = (60 - 2 ) + k x 60 
a= 58 + k x 60 
a chia hết cho 11 mà 58: 11 = 5 (dư 3); 11 - 3 = 8 
Vậy (k x 60) : 11 ( dư 8) 
Dùng phép thử chọn để tìm k ta được k = 6 
Vậy a = 58 + 6 x 60 = 418 

7 tháng 11 2017

Gọi số cần tìm là a(a thuộc N*)

Vì a chia 2 dư 1 , chia 3 dư 2 , chia 4 dư 3 , chia 5 dư 4

=> a+1 chia hết cho 2,3,4,5

=> a+1thuộcBC(2,3,4,5)

Ta có :

2=2

3=3

4=22

5=5

=>BCNN(2,3,4,5)=22 * 3 * 5=60

=>a+1thuộc B(60)={0;60;120;180;240;300;360;420;....}

=> a thuộc {59;119;179;239;299;359;419;....}

Vì a chia hết cho 7 ; a nhỏ nhất => a =179

Vậy số cần tìm là 179

(Điều kiện a nhỏ nhất là mình thêm nếu không a sẽ có nhiều kết quả thực ra la vô số kết quả)