Cho hình trụ có bán kính đáy bằng R và chiều cao bằng 3 R 2 . Mặt phẳng ( α ) song song với trục của hình trụ và cách trục một khoảng bằng R 2 . Diện tích thiết diện của hình trụ cắt bởi mặt phẳng là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên mặt đáy tâm O ta gọi H là trung điểm của bán kính OP. Qua H kẻ dây cung AB ⊥ OP và nằm trong đáy (O; r). Các đường sinh AD và BC cùng với các dây cung AB và DC (thuộc đáy (O’, r)) xác định cho ta thiết diện cần tìm là một hình chữ nhật. Gọi S là diện tích hình chữ nhật này, ta có: SABCD= AB.AD trong đó AD = 2r còn AB = 2AH. Vì H là trung điểm của OP nên ta tính được AB = r 3 . Vậy S ABCD = 2 r 2 3
Mặt phẳng (P) song song với trục và cách trục 3cm, cắt hình trụ theo thiết diện là tứ giác A A 1 B 1 B .
Gọi H là trung điểm của AB.
Ta có
SAA1B1B = AB. AA1 = 8. 7 = 56 (cm2)
Đáp án B
Ta có thiết diện như hình vẽ.
Ta có:
⇒ A B = 8 c m
⇒ S A B C D = 7 . 8 = 56 c m 2