K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017


Chọn B

NV
13 tháng 6 2021

\(y'=3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

a. Trên [-4;4] ta có: 

\(y\left(-4\right)=-41\) ; \(y\left(-1\right)=40\) ; \(y\left(3\right)=8\) ; \(y\left(4\right)=15\)

\(\Rightarrow y_{min}=-41\) ; \(y_{max}=40\)

b. Trên [0;5] ta có:

\(y\left(0\right)=35\) ; \(y\left(3\right)=8\)\(y\left(5\right)=40\)

\(\Rightarrow y_{max}=40\) ; \(y_{min}=8\)

27 tháng 8 2018

Đáp án C

19 tháng 1 2019

TXĐ: D = (-∞; 1) ∪ (1; +∞)

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 > 0 với ∀ x ∈ D.

⇒ hàm số đồng biến trên (-∞; 1) và (1; +∞).

⇒ Hàm số đồng biến trên [2; 4] và [-3; -2]

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

18 tháng 4 2019

Chọn A

Dựa vào đồ thị của hàm f'(x) ta có bảng biến thiên.

Vậy giá trị lớn nhất M = f(2)

Hàm số đồng biến trên khoảng (0;2) nên f(2) > f(1) => f(2) - f(1) > 0 .

Hàm số nghịch biến trên khoảng (2;4) nên f(2) > f(3) => f(2) - f(3) > 0.

Theo giả thuyết: f(0) + f(1) - 2f(2) = f(4) - f(3).

=> f(0) > f(4)

Vậy giá trị nhỏ nhất m = f(4)

31 tháng 7 2017

Đáp án C

Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .

Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3  trên R

* Bước 1: Tập xác định D = ℝ . Đạo hàm  y ' = 8 x 3 − 8 x   .

* Bước 2: Cho   y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .

* Bước 3: Ta có bảng biến thiên sau:

Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.

12 tháng 2 2019

31 tháng 8 2019

Chọn B

Ta có:

biến thiên của hàm số f(x) trên đoạn [0;4]

Nhìn vào bảng biến thiên ta thấy 

Ta có f(2) + f(4) = f(3) + f(0)  ⇔ f(0) - f(4) = f(2) - f(3) > 0.

Suy ra: f(4) < f(0). Do đó 

Vậy giá trị nhỏ nhất và lớn nhất của f(x) trên đoạn [0;4] lần lượt là: f(4), f(2).

4 tháng 6 2017

Chọn B

Từ đồ thị của hàm số f'(x) trên đoạn [0;4] ta có bảng biến thiên của hàm số trên đoạn [0;4] như sau:

Từ bảng biến thiên ta có 

Mặt khác 

Suy ra