Tập hợp các điểm biểu diễn số phức z thỏa mãn 2 z - 1 = z + z ¯ + 2 trên mặt phẳng tọa độ là một
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Đặt z = a + bi
Ta có:
Vậy quỹ tích là một parabol
Đáp án C.
Đặt z = a + bi với a , b ∈ ℝ ⇒ z → = a - b i ⇒ z + z → + 2 = 2 a + 2 .
Ta có: 2 z - 1 = z + z ¯ + 2 ⇔ 2 a - 1 + b i = 2 a + 1 ⇔ a - 1 2 + b 2 = a + 1 2 ⇔ b 2 = 4 a .
Vậy quỹ tích là một parabol.
Chọn C.
Trên mặt phẳng tọa độ Oxy , gọi M(x; y) biểu diễn số phức z = x + yi.
Ta có |z + 2| + |z – 2| = 5
Đặt F1( -2; 0) ; và F2( 2; 0) khi đó ( 1) trở thành MF1 + MF2 = 5
suy ra M nằm trên Elip có hai tiêu điểm là F1; F2 và bán kính trục lớn là 5/2.
Phương trình của elip đó là .
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z1 được biểu diễn bởi điểm A(1;-1).
Em có: |z - 1 + i| = 2 => MA = 2
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình:
Cách 2: Đặt . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
Vậ tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình:
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z 1 được biểu diễn bởi điểm A(1;-1).
Em có: z − 1 + i = 2 ⇒ MA = 2 .
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình: x − 1 2 + y + 1 2 = 4 .
Cách 2: Đặt z = x + yi , x ; y ∈ ℝ . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
z − 1 + i = 2 ⇔ x − 1 + y + 1 i = 2 ⇔ x − 1 2 + y + 1 2 = 2 ⇔ x − 1 2 + y + 1 2 = 4
Vậy tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình:
x − 1 2 + y + 1 2 = 4 .
Đáp án B.