Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân với BA = BC = a, SA ⊥ (ABC), SA = a. Gọi E, F lần lượt là trung điểm của các cạnh AB, AC. Tính cosin góc giữa hai mặt phẳng (SEF) và (SBC).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Kẻ B F ⊥ A C
Suy ra góc giữa hai mặt phẳng (SAC) và (SBC) là B H F ^
Do \(\Delta ABC\) là tam giác vuông cân và \(BA=BC\) nên \(\Delta ABC\) vuông cân tại \(B \) và \(AC=a\sqrt{2}\).
Trong mp (\(SAB \)) dựng \(AK\perp SB\) với \(K\in SB\)
Trong mp \((SAC)\) dựng \(AH\perp SC\) với \(H\in SC\)
Do \(SA\perp BC\) và \(AB\perp BC\) nên \(BC\perp\left(SAB\right)\)
\(\Rightarrow\) \(\left(SAB\right)\perp\left(SBC\right)\) \(\Rightarrow AK\perp\left(SBC\right)\)
\(\Rightarrow AK\perp SC\) mà \(AH\perp SC\) nên \(SC\perp\left(AHK\right)\)
\(\Rightarrow HK\perp SC\) mà \(\Delta AHK\) vuông tại \(K\) nên góc giữa 2 mp cần tính là \(\widehat{AHK}\)
Áp dụng hệ thức lượng trong tam giác vuông ta tính được \(AH=\dfrac{a\sqrt{2}}{\sqrt{3}}\) và \(AK=\dfrac{a}{\sqrt{2}}\)
\(\Rightarrow\sin\widehat{AHK}=\dfrac{\sqrt{3}}{2}\) \(\Rightarrow\cos\widehat{AHK}=\dfrac{1}{2}\)
Đáp án D
Phương pháp: Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đó.
Cách giải: Gọi H là trung điểm của AC
Ta có : \(SA\perp BC\), \(AB\perp BC\) \(\Rightarrow SB\perp BC\)
Do đó : góc giữa 2 mặt phẳng (SBC) và (ABC) bằng \(\widehat{SBA}=30^0\)
\(V_{S.ABM}=\frac{1}{2}V_{S.ABC}=\frac{1}{2}SA.AB.BC\)
\(BC=AB=a;SA=AB.\tan30^0=\frac{a\sqrt{3}}{3}\)
Vậy \(V_{s.ABM}=\frac{a^3\sqrt{3}}{36}\)
Chọn A