K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Chọn D

           

9 tháng 8 2019

5 tháng 1 2020

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
16 tháng 8 2018

Đáp án A

19 tháng 3 2017

Chọn A

31 tháng 12 2017

Chọn A.

26 tháng 1 2017

Đáp án B

Gọi N là trung điểm của BC.

d A B , S M = d A , S M N  

Dưng đường cao AK trong tam giác AMN, dựng đường cao AH trong tam giác SAK.

Dễ dàng chứng minh được A H ⊥ S M N  tại H, suy ra  d A B , S M = d A , S M N = A H

A K = B N = 2 a , S A = 5 a 3 ⇒ A H = 10 a 3 79  

20 tháng 8 2017

Đáp án B.

Gọi H là hình chiếu vuông góc của S trên (ABC)

Ta có A C ⊥ S H C ⇒ A C ⊥ H C ⇒ H C / / A B .

Tương tự A B ⊥ S H B ⇒ A B ⊥ H B ⇒ H B / / A C     

Vậy H là đỉnh thứ tư của hình vuông BACH như hình vẽ sau:

Khi ấy, ta có:  A H = 2 a 2 ⇒ S H = 2 a 6

⇒ V S . A B H C = 1 3 S H . S A B H C = 1 3 2 a 6 .4 a 2 = 8 6 a 3 3

⇒ V S . A B C = 1 2 V S . A B H C = 4 6 a 3 3

9 tháng 10 2019

Đáp án C