Cho số phức z thỏa mãn 1 + i z là số thực và z - 2 = m với m ∈ ℝ
Gọi m 0 là một giá trị của m để có đúng một số phức thỏa mãn bài toán.
Khi đó
A.
B.
C.
D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để có đúng một nghiệm phức thỏa mãn bài toán thì phương trình (1) phải có duy nhất một nghiệm a. Khi đó phương trình (1) phải thỏa mãn
Đáp án D
Đáp án B
Ta có:
Tập hợp điểm M biểu diễn w là trung trực của nên là đường thẳng d qua trung điểm I(m-1;2) và có n → ( 4 ; - 2 )
Đặt
Do ω ⩾ 2 5 nên M nằm ngoài đường tròn tâm O bán kính R= 2 5
Đáp án C
Phương pháp
Gọi số phức đã cho có dạng . Sử dụng giả thiết để đưa ra một hệ cho a, b giải trực tiếp hệ này để tìm a, b
Lời giải chi tiết.
Ta có:
Do z không là số thực nên ta phải có b ≠ 0 (2)
Ta lại có
Từ (1), (2), (3) ta có hệ
Đáp án A
Ta có
Số phức
có phần số thực bằng a+b-1 = 1(2)
Từ (1), (2)
Đáp án A
Ta có
Số phức có phần số thực bằng
a + b - 1 = 1(2)
Từ (1), (2) suy ra:
Đáp án D
Phương pháp.Sử dụng giả thiết để tìm được
Thay vào và sử dụng yêu cầu bài toán để biện luận và tìm giá trị của m 0
Lời giải chi tiết.
Giả sử . Khi đó ta có
Thay vào Ta nhận được
Để có đúng một nghiệm phức thỏa mãn bài toán thì phương trình (1) phải có duy nhất một nghiệm a.
Khi đó phương trình (1) phải thỏa mãn
Kết hợp với điều kiện ta suy ra giá trị cần tìm là
Sai lầm.Một bộ phận nhỏ học sinh vẫn có thể quên đưa ra điều kiện nên hai nghiệm là