Cho (O) đường kính AC. Kẻ tiếp tuyến Ax với (O), trên tia Ax lấy điểm B. Từ B, kẻ tiếp tuyến BD với (O) (D là tiếp điểm). AD cắt BC tại H, BC cắt (O) tại K.
a) Chứng minh bốn điểm A, B, D, O cùng thuộc một đường tròn.
b) Chứng minh: BH.BO = AB^2 và BH.BO = BK.BC.
c) Từ O vẽ đường thẳng song song với AD, cắt tia BA tại E. Từ B vẽ đường thẳng vuông góc với EC tại F, BF cắt AC tại M. Chứng minh MH vuông góc với BD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDO có
\(\widehat{BAO}+\widehat{BDO}=180^0\)
Do đó: ABDO là tứ giác nội tiếp
hay A,B,D,O cùng thuộc 1 đường tròn
a: Xét tứ giác CAOD có
\(\widehat{CAO}+\widehat{CDO}=180^0\)
=>CAOD là tứ giác nội tiếp đường tròn đường kính CO
=>C,A,O,D cùng thuộc đường tròn đường kính CO
b: Xét (O) có
CA,CD là tiếp tuyến
=>CA=CD
mà OA=OD
nên OC là trung trực của AD
=>OC\(\perp\)AD(1)
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)DB(2)
Từ (1) và (2) suy ra OC//DB
c: Sửa đề: CMBO
Xét ΔCAO vuông tại A và ΔMOB vuông tại O có
AO=BO
\(\widehat{COA}=\widehat{MBO}\)(CO//BM)
Do đó: ΔCAO=ΔMOB
=>CO=MB
Xét tứ giác CMBO có
CO//BM
CO=BM
Do đó: CMBO là hình bình hành
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: CM+MD=CD
nên CA+DB=CD
a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
hay \(\widehat{ADC}=180^0-90^0=90^0\)
b: Ta có: ΔADC vuông tại D
mà DI là đường trung tuyến ứng với cạnh huyền AC
nên DI=IC=IA=AC/2
Xét ΔODI và ΔOAI có
OD=OA
DI=AI
OI chung
Do đó: ΔODI=ΔOAI
Suy ra: \(\widehat{ODI}=\widehat{OAI}=90^0\)
hay ID là tiếp tuyến của (O)
a: ΔOAC cân tại O có OM là đườg cao
nên OM là phân giác của góc AOC
Xét ΔOAM và ΔOCM có
OA=OC
góc AOM=góc COM
OM chung
=>ΔOAM=ΔOCM
=>góc OCM=90 độ
=>MC là tiếp tuyến của (O)
b: Xét ΔAND vuông tại N và ΔANB vuông tại N có
AN chung
góc NAB=góc NAD
=>ΔAND=ΔANB
=>DN=BN
=>N là trung điểm của BD
c: CN//AB
AB vuông góc CH
=>CN vuông góc CH
=>CN là tiếp tuyến của (O)
a: Xét tứ giác ABDO có
\(\widehat{BAO}+\widehat{BDO}=180^0\)
Do đó: ABDO là tứ giác nội tiếp
hay A,B,D,O cùng thuộc 1 đường tròn
anh ơi chỉ em câu c thôi ạ