Cho tam giác ABC có B ^ = C ^ . Tia phân giác của góc A cắt BC tại D. Chọn câu đúng:
A. BD = DC
B. AB = AC
C. Cả A và B đều đúng
D. A đúng, B sai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC . có:
A. BD = 20/7 cm; CD = 15/7cm.
B. BD = 15/7 cm; CD = 20/7 cm
C. BD = 1,5 cm; CD = 2,5 cm
D. BD = 2,5 cm; CD = 1,5 cm
Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:
A. DA = 8/3 ; DC = 10/3
B. DA = 10/3; DC = 8/3
C. DA = 4; DC = 2
D. DA = 2,5; DC = 2,5
Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:
A. 1/AB + 1/AC = 2/AD
B. 1/AD + 1/AC = 1/AB
C. 1/ AB + 1/AC = 1/AD
D. 1/AB + 1/AC = 1
Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :
A. x = 14
B. x = 12
C. x = 8
D. Một kết quả khác
Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :
A.10
B.10_5/7
C.14
D.14_2/7
Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:
A. 1/4
B. 1/2
C. 3/4
D.1/3
Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:
A. 3,5
B.5
C. 40/7
D.6
Bài 8:
Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:
A. ME//AC
B. góc AEF = 50°
C. Góc FMC = 50°
D. MB/MA= FA/FC
Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc:
A. DA = 3cm
B. DB = 5cm
C. AC = 6cm
D. Cả 3 đều đúng
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
=>\(\widehat{B}\simeq53^0\)
=>\(\widehat{C}\simeq37^0\)
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{10}{7}\)
=>\(DB=\dfrac{30}{7}\left(cm\right);DC=\dfrac{40}{7}\left(cm\right)\)
Trong ΔADB, ta có:
∠B +∠(A1 ) +∠(D1) =180o (tổng 3 góc trong tam giác)
Suy ra: ∠(D1 ) =180o-(∠B +(A1)) (1)
Trong ΔADC, ta có:
∠C +∠(A2) +∠(D2) =180o (tổng 3 góc trong tam giác)
Suy ra: ∠(D2) =180o-(∠C +∠(A2) ) (2)
+) Lại có: ∠B =∠C (gỉa thiết)
∠(A1 ) =∠(A2) (vì AD là tia phân giác của góc BAC) (3)
Từ (1), (2) và (3) suy ra: ∠(D1) =∠(D2)
Xét ΔABD và ΔACD, ta có:
∠(A1 ) =∠(A2) ( Vì AD là tia phân giác của góc BAC)
AD cạnh chung
∠(D1 ) =∠(D2) ( chứng minh trên).
Vậy: ΔABD= ΔACD (g.c.g)
Vậy: AB = AC (hai cạnh tương ứng)
DB = DC (hai cạnh tương ứng)
cái này dẽ mà chỉ càn chứng minh 2 tam giác có chứa 2 cạnh đó bằng nhau là được
Xét tam giác ABD và tam giác ACD ta có:
Góc BAD = góc CAD (t/chất tia phân giác)
AD cạnh chung
Góc B = góc C (gt)
=> Tam giác ABD = tam giác ACD (g.c.g)
=> BD = DC (2 cạnh tương ứng)
AB = AC (2 cạnh tương ứng)
Mấy bài này cũng dễ mà, tự động não k đc à?
b: Xét ΔBDE và ΔBCE có
BD=BC
\(\widehat{DBE}=\widehat{CBE}\)
BE chung
Do đó: ΔBDE=ΔBCE
c: Ta có: ΔBDC cân tại B
mà BF là đường phân giác
nên F là trung điểm của CD và BF\(\perp\)CD