Cho tam giác ABC có ∠ B = 70 o , ∠ C = 30 o . Khi đó
A. BC > AC > AB
B. AC > BC > AB
C. BC < AC < AB
D. AB > BC > AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(70^0+50^0\right)=180^0-120^0=60^0\)
\(\widehat{A}>\widehat{C}>\widehat{B}\left(70^0>60^0>50^0\right)\)
\(=>BC>AB>AC\)
=> Chọn C
Tam giác ABC có
A + B + C = 180 ĐỘ => B + C = 180 - A = 180 - 50 = 130 ĐỘ
Theo bài ra ta có
B : C = 2 : 3 => B/2 = C /3
Áp dụng dãy tỉ số (=) ta có
\(\frac{B}{2}=\frac{C}{3}=\frac{B+C}{2+3}=\frac{100}{5}=20\)
=> B = 40 ĐỘ
=> C = 60 ĐỘ
Tam giác ABC có B < A < c( 40 < 50 < 60 ) => AC < BC < AB
VẬy ý C đúng
Do ∠A là góc tù nên ∠A lớn nhất. Vậy có ∠A> ∠B > ∠C. Từ đó suy ra BC > AC > AB. Chọn (D) BC > AC > AB.
a: Xét ΔABC có:
AB+AC>BC(BĐT tam giác)
b: Xét ΔABC có AB+AC>BC(BĐT tam giác)
d: (AB+AC)^2=AB^2+AC^2+2*AB*AC
=BC^2+2*AH*BC<BC^2+2*AH*BC+AH^2=(BC+AH)^2
=>AB+AC<AH+BC
Vì O thuộc đường trung trực của cạnh AB nên OA = OB. Vì ba đường trung trực của một tam giác đồng quy và do tam giác ABC cân tại A nên OA là đường trung trực của BC, do đó AO ⊥ BC. Vì tam giác ABC cân tại A nên đường trung trực AO đồng thời là đường phân giác của góc A
+) Xét ΔAOB và ΔAOC có:
OA chung
AB = AC (do tam giác ABC cân tại A)
∠OAB = ∠OAC ( Do AO là tia phân giác của góc BAC)
Do đó ΔAOB = ΔAOC ( c.g.c) suy ra ∠(AOB) = ∠(AOC) .
Do tam giác ABC cân tại A nhưng không là tam giác đều nên O không là giao điểm của ba đường phân giác của tam giác ABC. Vậy O không cách đều ba cạnh của tam giác ABC.
Đáp số (C) AO ⊥ BC.
a) Ta cần tính cạnh BC và hai góc \(\widehat B,\widehat C.\)
Áp dụng định lí cosin, ta có:
\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {14^2} + {23^2} - 2.14.23.\cos {125^o}\\ \Rightarrow BC \approx 33\end{array}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{33}}{{\sin {{125}^o}}} = \frac{{23}}{{\sin B}} = \frac{{14}}{{\sin C}}\\ \Rightarrow \sin B = \frac{{23.\sin {{125}^o}}}{{33}} \approx 0,57\\ \Rightarrow \widehat B \approx {35^o} \Rightarrow \widehat C \approx {20^o}\end{array}\)
b) Ta cần tính góc A và hai cạnh AB, AC.
Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {64^o} - {38^o} = {78^o}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{22}}{{\sin {{78}^o}}} = \frac{{AC}}{{\sin {{64}^o}}} = \frac{{AB}}{{\sin {{38}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}AC = \sin {64^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 20,22\\AB = \sin {38^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 13,85\end{array} \right.\end{array}\)
c) Ta cần tính góc A và hai cạnh AB, BC.
Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {120^o} - {28^o} = {32^o}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{BC}}{{\sin {{32}^o}}} = \frac{{22}}{{\sin {{120}^o}}} = \frac{{AB}}{{\sin {{28}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}BC = \sin {32^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 13,5\\AB = \sin {28^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 12\end{array} \right.\end{array}\)
d) Ta cần tính số đo ba góc \(\widehat A,\widehat B,\widehat C\)
Áp dụng hệ quả của định lí cosin, ta có:
\(\begin{array}{l}\cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}};\cos B = \frac{{B{C^2} + A{B^2} - A{C^2}}}{{2.BC.BA}}\\ \Rightarrow \cos A = \frac{{{{32}^2} + {{23}^2} - {{44}^2}}}{{2.32.23}} = \frac{{ - 383}}{{1472}};\cos B = \frac{{{{44}^2} + {{23}^2} - {{32}^2}}}{{2.44.23}} = \frac{{131}}{{184}}\\ \Rightarrow \widehat A \approx {105^o},\widehat B = {44^o}36'\\ \Rightarrow \widehat C = {30^o}24'\end{array}\)
Ta có ∠A = 180o - 70o - 30o = 80o. Do A > B > C ⇒ BC > AC > AB
Chọn A